11-108235705-TA-T

Variant summary

Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong

The NM_000051.4(ATM):​c.368del​(p.Tyr123LeufsTer6) variant causes a frameshift change. The variant allele was found at a frequency of 0.000000685 in 1,459,780 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Pathogenic (β˜…β˜…). Variant results in nonsense mediated mRNA decay.

Frequency

Genomes: not found (cov: 32)
Exomes 𝑓: 6.9e-7 ( 0 hom. )

Consequence

ATM
NM_000051.4 frameshift

Scores

Not classified

Clinical Significance

Pathogenic criteria provided, multiple submitters, no conflicts P:6

Conservation

PhyloP100: 6.85
Variant links:
Genes affected
ATM (HGNC:795): (ATM serine/threonine kinase) The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. [provided by RefSeq, Aug 2010]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Pathogenic. Variant got 18 ACMG points.

PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 11-108235705-TA-T is Pathogenic according to our data. Variant chr11-108235705-TA-T is described in ClinVar as [Pathogenic]. Clinvar id is 181867.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect #exon/exons MANE Protein UniProt
ATMNM_000051.4 linkuse as main transcriptc.368del p.Tyr123LeufsTer6 frameshift_variant 5/63 ENST00000675843.1 NP_000042.3

Ensembl

Gene Transcript HGVSc HGVSp Effect #exon/exons TSL MANE Protein Appris UniProt
ATMENST00000675843.1 linkuse as main transcriptc.368del p.Tyr123LeufsTer6 frameshift_variant 5/63 NM_000051.4 ENSP00000501606 P1

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
AF:
6.85e-7
AC:
1
AN:
1459780
Hom.:
0
Cov.:
30
AF XY:
0.00000138
AC XY:
1
AN XY:
726346
show subpopulations
Gnomad4 AFR exome
AF:
0.00
Gnomad4 AMR exome
AF:
0.00
Gnomad4 ASJ exome
AF:
0.00
Gnomad4 EAS exome
AF:
0.00
Gnomad4 SAS exome
AF:
0.00
Gnomad4 FIN exome
AF:
0.00
Gnomad4 NFE exome
AF:
9.01e-7
Gnomad4 OTH exome
AF:
0.00
GnomAD4 genome
Cov.:
32

ClinVar

Significance: Pathogenic
Submissions summary: Pathogenic:6
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

Familial cancer of breast Pathogenic:2
Pathogenic, criteria provided, single submitterclinical testingMyriad Genetics, Inc.Jan 09, 2024This variant is considered pathogenic. This variant creates a frameshift predicted to result in premature protein truncation. -
Pathogenic, criteria provided, single submitterclinical testingBaylor GeneticsFeb 22, 2024- -
Hereditary cancer-predisposing syndrome Pathogenic:2
Pathogenic, criteria provided, single submitterclinical testingColor Diagnostics, LLC DBA Color HealthJan 15, 2020This variant deletes 1 nucleotide in exon 5 of the ATM gene, creating a frameshift and premature translation stop signal. This variant is expected to result in an absent or non-functional protein product. This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Loss of ATM function is a known mechanism of disease (clinicalgenome.org). Based on the available evidence, this variant is classified as Pathogenic. -
Pathogenic, criteria provided, single submitterclinical testingAmbry GeneticsSep 28, 2022The c.368delA pathogenic mutation, located in coding exon 4 of the ATM gene, results from a deletion of one nucleotide at nucleotide position 368, causing a translational frameshift with a predicted alternate stop codon (p.Y123Lfs*6). This alteration has been reported in the literature in multiple patients with a clinical diagnosis of ataxia-telangiectasia (Li A et al. Am. J. Med. Genet. 2000 May;92(3):170-7; Greenberger S et al. J. Am. Acad. Dermatol. 2013 Jun;68(6):932-6; Vilozni D et al. Pediatr. Pulmonol. 2010 Oct;45(10):1030-6). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. -
Ataxia-telangiectasia syndrome Pathogenic:1
Pathogenic, criteria provided, single submitterclinical testingLabcorp Genetics (formerly Invitae), LabcorpApr 18, 2022This sequence change creates a premature translational stop signal (p.Tyr123Leufs*6) in the ATM gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in ATM are known to be pathogenic (PMID: 23807571, 25614872). This variant is not present in population databases (gnomAD no frequency). For these reasons, this variant has been classified as Pathogenic. This premature translational stop signal has been observed in individual(s) with ataxia-telangiectasia and breast cancer (PMID: 10817650, 23360865, 26681312). ClinVar contains an entry for this variant (Variation ID: 181867). -
not provided Pathogenic:1
Pathogenic, criteria provided, single submitterclinical testingGeneDxJul 23, 2014This deletion of one nucleotide is denoted ATM c.368delA at the cDNA level and p.Tyr123LeufsX6 (Y123LfsX6) at the protein level. The normal sequence, with the bases that are deleted in brackets, is AATT[A]TATC. The deletion causes a frameshift, which changes a Tyrosine to a Leucine at codon 123, and creates a premature stop codon at position 6 of the new reading frame. This variant is predicted to cause loss of normal protein function through either protein truncation or nonsense-mediated mRNA decay. ATM c.368delA was reported in a patient with Ataxia-Telangiectasia (Li 2000). we consider this variant to be pathogenic.The presence of -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.080
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs730881296; hg19: chr11-108106432; API