3-37048946-A-T
Position:
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000249.4(MLH1):c.2032A>T(p.Lys678*) variant causes a stop gained change. The variant allele was found at a frequency of 0.000000684 in 1,461,830 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 32)
Exomes 𝑓: 6.8e-7 ( 0 hom. )
Consequence
MLH1
NM_000249.4 stop_gained
NM_000249.4 stop_gained
Scores
4
2
1
Clinical Significance
Conservation
PhyloP100: 6.87
Genes affected
MLH1 (HGNC:7127): (mutL homolog 1) The protein encoded by this gene can heterodimerize with mismatch repair endonuclease PMS2 to form MutL alpha, part of the DNA mismatch repair system. When MutL alpha is bound by MutS beta and some accessory proteins, the PMS2 subunit of MutL alpha introduces a single-strand break near DNA mismatches, providing an entry point for exonuclease degradation. The encoded protein is also involved in DNA damage signaling and can heterodimerize with DNA mismatch repair protein MLH3 to form MutL gamma, which is involved in meiosis. This gene was identified as a locus frequently mutated in hereditary nonpolyposis colon cancer (HNPCC). [provided by RefSeq, Aug 2017]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 3-37048946-A-T is Pathogenic according to our data. Variant chr3-37048946-A-T is described in ClinVar as [Likely_pathogenic]. Clinvar id is 439174.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
MLH1 | NM_000249.4 | c.2032A>T | p.Lys678* | stop_gained | 18/19 | ENST00000231790.8 | NP_000240.1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
MLH1 | ENST00000231790.8 | c.2032A>T | p.Lys678* | stop_gained | 18/19 | 1 | NM_000249.4 | ENSP00000231790.3 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome AF: 6.84e-7 AC: 1AN: 1461830Hom.: 0 Cov.: 31 AF XY: 0.00 AC XY: 0AN XY: 727220
GnomAD4 exome
AF:
AC:
1
AN:
1461830
Hom.:
Cov.:
31
AF XY:
AC XY:
0
AN XY:
727220
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:3
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Colorectal cancer, hereditary nonpolyposis, type 2 Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Myriad Genetics, Inc. | Jul 25, 2023 | This variant is considered pathogenic. This variant creates a termination codon and is predicted to result in premature protein truncation. - |
not provided Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Quest Diagnostics Nichols Institute San Juan Capistrano | Jun 03, 2017 | - - |
Hereditary cancer-predisposing syndrome Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Aug 27, 2018 | The p.K678* pathogenic mutation (also known as c.2032A>T), located in coding exon 18 of the MLH1 gene, results from an A to T substitution at nucleotide position 2032. This changes the amino acid from a lysine to a stop codon within coding exon 18. This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Uncertain
D
Vest4
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at