NM_000546.6:c.376T>C
Variant summary
Our verdict is Pathogenic. The variant received 11 ACMG points: 11P and 0B. PM1PM2PM5PP3_StrongPP5
The NM_000546.6(TP53):āc.376T>Cā(p.Tyr126His) variant causes a missense, splice region change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. 2/3 splice prediction tools predict no significant impact on normal splicing. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. Y126C) has been classified as Likely pathogenic.
Frequency
Consequence
NM_000546.6 missense, splice_region
Scores
Clinical Significance
Conservation
Publications
- breast cancerInheritance: AD Classification: DEFINITIVE Submitted by: Ambry Genetics
- Li-Fraumeni syndromeInheritance: AD Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Labcorp Genetics (formerly Invitae), G2P, ClinGen, Orphanet
- Li-Fraumeni syndrome 1Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Ambry Genetics, Genomics England PanelApp
- adrenocortical carcinoma, hereditaryInheritance: AD Classification: STRONG Submitted by: Ambry Genetics
- sarcomaInheritance: AD Classification: STRONG Submitted by: Genomics England PanelApp
- bone marrow failure syndrome 5Inheritance: AD Classification: MODERATE Submitted by: Ambry Genetics
- colorectal cancerInheritance: AD Classification: MODERATE Submitted by: Ambry Genetics
- choroid plexus carcinomaInheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 11 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD4 exome Cov.: 35
GnomAD4 genome Cov.: 33
ClinVar
Submissions by phenotype
Hereditary cancer-predisposing syndrome Pathogenic:1
The p.Y126H pathogenic mutation (also known as c.376T>C) is located in coding exon 4 of the TP53 gene. The tyrosine at codon 126 is replaced by histidine, an amino acid with similar properties. This change occurs in the first base pair of coding exon 4. This variant is in the DNA binding domain of the TP53 protein and is reported to have loss of transactivation in yeast based assays (IARC TP53 database: Kato S et al. Proc. Natl. Acad. Sci. USA 2003 Jul;100:8424-9). Additional studies conducted in human cell lines indicate this alteration has a dominant negative effect and is deficient at growth suppression (Kotler E et al. Mol. Cell. 2018 Jul;71:178-190.e8; Giacomelli AO et al. Nat. Genet. 2018 Oct;50:1381-1387). This variant was detected in at least one individual at an allele fraction that is suggestive of clonal hematopoiesis, a predictor of TP53 pathogenicity (Ambry internal data; Fortuno C et al. Genet Med. 2022 03;24:673-680). Based on internal structural analysis, this variant is anticipated to result in a significant decrease in structural stability (Natan E et al. J Mol Biol, 2011 Jun;409:358-68). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Based on the supporting evidence, this variant is interpreted as a disease-causing mutation. -
Li-Fraumeni syndrome Uncertain:1
This sequence change replaces tyrosine, which is neutral and polar, with histidine, which is basic and polar, at codon 126 of the TP53 protein (p.Tyr126His). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with TP53-related conditions. ClinVar contains an entry for this variant (Variation ID: 1734755). An algorithm developed to predict the effect of missense changes on protein structure and function (PolyPhen-2) suggests that this variant is likely to be disruptive. Experimental studies have shown that this missense change affects TP53 function (PMID: 12826609, 29979965, 30224644). In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at