rs63749862
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000535.7(PMS2):c.325G>T(p.Glu109*) variant causes a stop gained change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 32)
Consequence
PMS2
NM_000535.7 stop_gained
NM_000535.7 stop_gained
Scores
5
1
1
Clinical Significance
Conservation
PhyloP100: 7.30
Genes affected
PMS2 (HGNC:9122): (PMS1 homolog 2, mismatch repair system component) The protein encoded by this gene is a key component of the mismatch repair system that functions to correct DNA mismatches and small insertions and deletions that can occur during DNA replication and homologous recombination. This protein forms heterodimers with the gene product of the mutL homolog 1 (MLH1) gene to form the MutL-alpha heterodimer. The MutL-alpha heterodimer possesses an endonucleolytic activity that is activated following recognition of mismatches and insertion/deletion loops by the MutS-alpha and MutS-beta heterodimers, and is necessary for removal of the mismatched DNA. There is a DQHA(X)2E(X)4E motif found at the C-terminus of the protein encoded by this gene that forms part of the active site of the nuclease. Mutations in this gene have been associated with hereditary nonpolyposis colorectal cancer (HNPCC; also known as Lynch syndrome) and Turcot syndrome. [provided by RefSeq, Apr 2016]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 7-6003718-C-A is Pathogenic according to our data. Variant chr7-6003718-C-A is described in ClinVar as [Likely_pathogenic]. Clinvar id is 1350177.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 29
GnomAD4 exome
Cov.:
29
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:3
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Hereditary nonpolyposis colorectal neoplasms Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Jan 11, 2024 | This sequence change creates a premature translational stop signal (p.Glu109*) in the PMS2 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in PMS2 are known to be pathogenic (PMID: 21376568, 24362816). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with PMS2-related conditions. ClinVar contains an entry for this variant (Variation ID: 1350177). Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site. For these reasons, this variant has been classified as Pathogenic. - |
Hereditary cancer-predisposing syndrome Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Aug 07, 2024 | The p.E109* variant (also known as c.325G>T), located in coding exon 4 of the PMS2 gene, results from a G to T substitution at nucleotide position 325. This changes the amino acid from a glutamic acid to a stop codon within coding exon 4. This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. In silico analysis predicts that this alteration will abolish the native splice donor site and this alteration will result in the creation or strengthening of a novel splice donor site. RNA studies have demonstrated that this alteration results in a transcript predicted to lead to a protein with an in-frame deletion of 10 amino acids that removes the premature stop codon. The exact functional impact of the deleted amino acids is unknown at this time; however, the impacted region is critical for protein function (Ambry internal data). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). Based on the majority of available evidence to date, this variant is likely to be pathogenic. - |
Lynch syndrome 4 Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Myriad Genetics, Inc. | Sep 18, 2023 | This variant is considered pathogenic. This variant creates a termination codon and is predicted to result in premature protein truncation. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Pathogenic
D
Vest4
GERP RS
RBP_binding_hub_radar
RBP_regulation_power_radar
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
DS_DG_spliceai
Position offset: 2
DS_DL_spliceai
Position offset: -28
Find out detailed SpliceAI scores and Pangolin per-transcript scores at
Publications
No publications associated with this variant yet.