rs876658572

Variant summary

Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong

The NM_000051.4(ATM):​c.1660del​(p.Thr554ArgfsTer2) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,586 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Pathogenic (β˜…β˜…). Variant results in nonsense mediated mRNA decay.

Frequency

Genomes: not found (cov: 32)
Exomes 𝑓: 6.8e-7 ( 0 hom. )

Consequence

ATM
NM_000051.4 frameshift

Scores

Not classified

Clinical Significance

Pathogenic criteria provided, multiple submitters, no conflicts P:6

Conservation

PhyloP100: 1.32
Variant links:
Genes affected
ATM (HGNC:795): (ATM serine/threonine kinase) The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. [provided by RefSeq, Aug 2010]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Pathogenic. Variant got 18 ACMG points.

PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 11-108251887-GA-G is Pathogenic according to our data. Variant chr11-108251887-GA-G is described in ClinVar as [Pathogenic]. Clinvar id is 230448.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars. Variant chr11-108251887-GA-G is described in Lovd as [Pathogenic].

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect #exon/exons MANE Protein UniProt
ATMNM_000051.4 linkuse as main transcriptc.1660del p.Thr554ArgfsTer2 frameshift_variant 11/63 ENST00000675843.1 NP_000042.3

Ensembl

Gene Transcript HGVSc HGVSp Effect #exon/exons TSL MANE Protein Appris UniProt
ATMENST00000675843.1 linkuse as main transcriptc.1660del p.Thr554ArgfsTer2 frameshift_variant 11/63 NM_000051.4 ENSP00000501606 P1

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
AF:
6.84e-7
AC:
1
AN:
1461586
Hom.:
0
Cov.:
31
AF XY:
0.00000138
AC XY:
1
AN XY:
727098
show subpopulations
Gnomad4 AFR exome
AF:
0.00
Gnomad4 AMR exome
AF:
0.00
Gnomad4 ASJ exome
AF:
0.00
Gnomad4 EAS exome
AF:
0.00
Gnomad4 SAS exome
AF:
0.00
Gnomad4 FIN exome
AF:
0.00
Gnomad4 NFE exome
AF:
8.99e-7
Gnomad4 OTH exome
AF:
0.00
GnomAD4 genome
Cov.:
32

ClinVar

Significance: Pathogenic
Submissions summary: Pathogenic:6
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

Ataxia-telangiectasia syndrome Pathogenic:2
Pathogenic, criteria provided, single submitterclinical testingLabcorp Genetics (formerly Invitae), LabcorpNov 25, 2023This sequence change creates a premature translational stop signal (p.Thr554Argfs*2) in the ATM gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in ATM are known to be pathogenic (PMID: 23807571, 25614872). This variant is not present in population databases (gnomAD no frequency). This premature translational stop signal has been observed in individual(s) with breast cancer, and an individual affected with ataxia-telangiectasia (PMID: 10677309, 17393301, 19781682, 22213089, 30197789). ClinVar contains an entry for this variant (Variation ID: 230448). For these reasons, this variant has been classified as Pathogenic. -
Pathogenic, no assertion criteria providedclinical testingNatera, Inc.Sep 16, 2020- -
Familial cancer of breast Pathogenic:2
Pathogenic, criteria provided, single submitterclinical testingBaylor GeneticsFeb 20, 2024- -
Pathogenic, criteria provided, single submitterclinical testingMyriad Genetics, Inc.Jan 16, 2024This variant is considered pathogenic. This variant creates a frameshift predicted to result in premature protein truncation. -
Hereditary cancer-predisposing syndrome Pathogenic:2
Pathogenic, criteria provided, single submitterclinical testingColor Diagnostics, LLC DBA Color HealthNov 03, 2022This variant deletes 1 nucleotide in exon 11 of the ATM gene, creating a frameshift and premature translation stop signal. This variant is expected to result in an absent or non-functional protein product. This variant has been reported in individuals affected with breast cancer (PMID: 10677309, 17393301, 19781682). This variant has also been observed in the compound heterozygous state in an individual affected with autosomal recessive ataxia-telangiectasia (PMID: 22213089), indicating that this variant contributes to disease. This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Loss of ATM function is a known mechanism of disease (clinicalgenome.org). Based on the available evidence, this variant is classified as Pathogenic. -
Pathogenic, criteria provided, single submitterclinical testingAmbry GeneticsOct 26, 2021The c.1660delA pathogenic mutation, located in coding exon 10 of the ATM gene, results from a deletion of one nucleotide at nucleotide position 1660, causing a translational frameshift with a predicted alternate stop codon (p.T554Rfs*2). This alteration has been detected in 1/4112 breast cancer patients and 0/2399 healthy control individuals across numerous studies (Tavtigian S et al. Am J Hum Genet. 2009 Oct;85(4):427-46). This mutation has also been detected (in conjunction with ATM c.1027_1030delGAAA) in an individual with ataxia telangiectasia (Verhagen MM et al. Hum Mutat 2012 Mar;33(3):561-71). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs876658572; hg19: chr11-108122614; API