1-11130747-C-T
Variant summary
Our verdict is Pathogenic. Variant got 12 ACMG points: 12P and 0B. PM2PP3_ModeratePP5_Very_Strong
The NM_004958.4(MTOR):c.5395G>A(p.Glu1799Lys) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Pathogenic (★★).
Frequency
Consequence
NM_004958.4 missense
Scores
Clinical Significance
Conservation
Genome browser will be placed here
ACMG classification
Verdict is Pathogenic. Variant got 12 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD4 exome Data not reliable, filtered out with message: AC0 AF: 0.00 AC: 0AN: 1428360Hom.: 0 Cov.: 32 AF XY: 0.00 AC XY: 0AN XY: 707194
GnomAD4 genome Cov.: 32
ClinVar
Submissions by phenotype
Macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome Pathogenic:7
- -
The variant is not observed in the gnomAD v2.1.1 dataset. Predicted Consequence/Location: The variant is located in a mutational hot spot and/or well-established functional domain in which established pathogenic variants have been reported (PMID: 23322780, 27482884, 21210909). Missense changes are a common disease-causing mechanism. In silico tool predictions suggest damaging effect of the variant on gene or gene product [REVEL: 0.64 (>=0.6, sensitivity 0.68 and specificity 0.92)]. Same nucleotide change resulting in same amino acid change has been previously reported as pathogenic/likely pathogenic with strong evidence (ClinVar ID: VCV000217823 /PMID: 25851998 /3billion dataset). Therefore, this variant is classified as Pathogenic according to the recommendation of ACMG/AMP guideline. -
This variant was identified as de novo. -
The MTOR c.5395G>A (p.Glu1799Lys) variant is a missense variant that has been described in a heterozygous state in at least 12 individuals from seven unrelated families with features of Smith-Kingsmore syndrome (Baynam et al. 2015; Mroske et al. 2015; Mirzaa et al. 2016; Moosa et al. 2017; Gordo et al. 2018; Dobyns and Mirzaa 2019). An additional feature of multiple intestinal polyps was reported in one individual. In multiple cases, the variant was shown to occur de novo. In at least three families, the variant was found in multiple affected children despite not being detected in the parent's blood, suggesting gonadal mosaicism. The p.Glu1799Lys variant is not reported in the Genome Aggregation Database in a region of good sequence coverage, so the variant is presumed to be rare. Glu1799 is located in the FAT domain, which serves to regulate MTOR activity, and experiments in patient cells, human cell lines, and cultured rodent neurons have confirmed a gain-of-function effect of the p.Glu1799Lys variant (Grabiner et al. 2014; Baynam et al. 2015; Mirzaa et al. 2016). Based on the collective evidence, the p.Glu1799Lys variant is classified as pathogenic for Smith-Kingsmore syndrome. -
- -
- -
- -
not provided Pathogenic:4
PS4, PS3, PM6 -
This sequence change replaces glutamic acid, which is acidic and polar, with lysine, which is basic and polar, at codon 1799 of the MTOR protein (p.Glu1799Lys). This variant is not present in population databases (gnomAD no frequency). This missense change has been observed in individual(s) with Smith–Kingsmore syndrome or MTOR-related megalencephaly and intellectual disability (PMID: 25851998, 26542245, 27159400, 27513193, 27753196, 28475857). In at least one individual the variant was observed to be de novo. ClinVar contains an entry for this variant (Variation ID: 217823). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt MTOR protein function with a negative predictive value of 95%. Experimental studies have shown that this missense change affects MTOR function (PMID: 24631838, 25851998). For these reasons, this variant has been classified as Pathogenic. -
- -
Functional studies indicate that E1799K results in an increase in mTOR pathway activity, suggesting a gain-of-function mechanism of disease (Baynam, et al., 2015); In silico analysis supports that this missense variant has a deleterious effect on protein structure/function; This variant is associated with the following publications: (PMID: 27739187, 27159400, 25851998, 26542245, 27513193, 27753196, 28892148, 28475857, 32581362, 33077954, 23636326, 24631838, 31441589, 31064327, 30764584, 30050716, 29296277, 27860216, 28007777, 24625776, 26432419) -
Inborn genetic diseases Pathogenic:1
- -
Rare genetic intellectual disability Pathogenic:1
- -
Intellectual disability, severe Pathogenic:1
- -
Isolated focal cortical dysplasia type II Pathogenic:1
This variant was determined to be pathogenic according to ACMG Guidelines, 2015 [PMID:25741868]. -
Intellectual disability Pathogenic:1
de novo variant, absent from gnomAD. Smith-Kingsmore syndrome -
CEBALID syndrome Pathogenic:1
- -
Isolated focal cortical dysplasia type II;C4225259:Macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome Pathogenic:1
- -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at