11-2585280-G-C
Variant summary
Our verdict is Pathogenic. The variant received 16 ACMG points: 16P and 0B. PS1PM1PM2PM5PP2PP3_StrongPP5
The NM_000218.3(KCNQ1):c.1101G>C(p.Gln367His) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars). Another nucleotide change resulting in the same amino acid substitution has been previously reported as Likely pathogenic in ClinVar. Another variant affecting the same amino acid position, but resulting in a different missense (i.e. Q367R) has been classified as Likely pathogenic.
Frequency
Consequence
NM_000218.3 missense
Scores
Clinical Significance
Conservation
Publications
- long QT syndromeInheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
- long QT syndrome 1Inheritance: AD, AR Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), G2P
- Jervell and Lange-Nielsen syndromeInheritance: AR Classification: DEFINITIVE Submitted by: ClinGen
- Jervell and Lange-Nielsen syndrome 1Inheritance: AR Classification: DEFINITIVE, STRONG Submitted by: PanelApp Australia, Labcorp Genetics (formerly Invitae), G2P
- atrial fibrillation, familial, 3Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
- short QT syndromeInheritance: AD Classification: STRONG, SUPPORTIVE Submitted by: ClinGen, Orphanet
- short QT syndrome type 2Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae), G2P
- familial atrial fibrillationInheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
- Jervell and Lange-Nielsen syndromeInheritance: AR Classification: SUPPORTIVE Submitted by: Orphanet
- hypertrophic cardiomyopathyInheritance: AD Classification: NO_KNOWN Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 16 ACMG points.
Transcripts
RefSeq
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
|---|---|---|---|---|---|---|---|---|
| KCNQ1 | NM_000218.3 | c.1101G>C | p.Gln367His | missense_variant | Exon 8 of 16 | ENST00000155840.12 | NP_000209.2 |
Ensembl
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
|---|---|---|---|---|---|---|---|---|---|---|
| KCNQ1 | ENST00000155840.12 | c.1101G>C | p.Gln367His | missense_variant | Exon 8 of 16 | 1 | NM_000218.3 | ENSP00000155840.2 |
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD4 exome Cov.: 31
GnomAD4 genome Cov.: 33
ClinVar
Submissions by phenotype
Long QT syndrome Pathogenic:1
This sequence change replaces glutamine, which is neutral and polar, with histidine, which is basic and polar, at codon 367 of the KCNQ1 protein (p.Gln367His). This variant is not present in population databases (gnomAD no frequency). This missense change has been observed in individuals with long QT syndrome (PMID: 17438609). ClinVar contains an entry for this variant (Variation ID: 1203515). Invitae Evidence Modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) indicates that this missense variant is expected to disrupt KCNQ1 protein function with a positive predictive value of 95%. This variant disrupts the p.Gln367 amino acid residue in KCNQ1. Other variant(s) that disrupt this residue have been determined to be pathogenic (internal data). This suggests that this residue is clinically significant, and that variants that disrupt this residue are likely to be disease-causing. For these reasons, this variant has been classified as Pathogenic. -
not provided Uncertain:1
Has not been previously published as pathogenic or benign to our knowledge; Not observed in large population cohorts (Lek et al., 2016); In silico analysis supports that this missense variant has a deleterious effect on protein structure/function; This variant is associated with the following publications: (PMID: 23158531) -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at