11-2588798-AC-ACC

Variant summary

Our verdict is Pathogenic. The variant received 16 ACMG points: 16P and 0B. PVS1PP5_Very_Strong

The NM_000218.3(KCNQ1):​c.1343dupC​(p.Glu449ArgfsTer14) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.0000062 in 1,612,714 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Pathogenic (★★). Variant results in nonsense mediated mRNA decay.

Frequency

Genomes: 𝑓 0.000013 ( 0 hom., cov: 33)
Exomes 𝑓: 0.0000055 ( 0 hom. )

Consequence

KCNQ1
NM_000218.3 frameshift

Scores

Not classified

Clinical Significance

Pathogenic criteria provided, multiple submitters, no conflicts P:13

Conservation

PhyloP100: 0.0710

Publications

8 publications found
Variant links:
Genes affected
KCNQ1 (HGNC:6294): (potassium voltage-gated channel subfamily Q member 1) This gene encodes a voltage-gated potassium channel required for repolarization phase of the cardiac action potential. This protein can form heteromultimers with two other potassium channel proteins, KCNE1 and KCNE3. Mutations in this gene are associated with hereditary long QT syndrome 1 (also known as Romano-Ward syndrome), Jervell and Lange-Nielsen syndrome, and familial atrial fibrillation. This gene exhibits tissue-specific imprinting, with preferential expression from the maternal allele in some tissues, and biallelic expression in others. This gene is located in a region of chromosome 11 amongst other imprinted genes that are associated with Beckwith-Wiedemann syndrome (BWS), and itself has been shown to be disrupted by chromosomal rearrangements in patients with BWS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2011]
KCNQ1 Gene-Disease associations (from GenCC):
  • long QT syndrome
    Inheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
  • long QT syndrome 1
    Inheritance: AD, AR Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), G2P
  • Jervell and Lange-Nielsen syndrome
    Inheritance: AR Classification: DEFINITIVE Submitted by: ClinGen
  • Jervell and Lange-Nielsen syndrome 1
    Inheritance: AR Classification: DEFINITIVE, STRONG Submitted by: PanelApp Australia, Labcorp Genetics (formerly Invitae), G2P
  • atrial fibrillation, familial, 3
    Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
  • short QT syndrome
    Inheritance: AD Classification: STRONG, SUPPORTIVE Submitted by: ClinGen, Orphanet
  • short QT syndrome type 2
    Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae), G2P
  • familial atrial fibrillation
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • Jervell and Lange-Nielsen syndrome
    Inheritance: AR Classification: SUPPORTIVE Submitted by: Orphanet
  • hypertrophic cardiomyopathy
    Inheritance: AD Classification: NO_KNOWN Submitted by: ClinGen

Genome browser will be placed here

ACMG classification

Classification was made for transcript

Our verdict: Pathogenic. The variant received 16 ACMG points.

PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PP5
Variant 11-2588798-A-AC is Pathogenic according to our data. Variant chr11-2588798-A-AC is described in ClinVar as Pathogenic. ClinVar VariationId is 52978.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
KCNQ1NM_000218.3 linkc.1343dupC p.Glu449ArgfsTer14 frameshift_variant Exon 10 of 16 ENST00000155840.12 NP_000209.2

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
KCNQ1ENST00000155840.12 linkc.1343dupC p.Glu449ArgfsTer14 frameshift_variant Exon 10 of 16 1 NM_000218.3 ENSP00000155840.2

Frequencies

GnomAD3 genomes
AF:
0.0000132
AC:
2
AN:
151480
Hom.:
0
Cov.:
33
show subpopulations
Gnomad AFR
AF:
0.0000243
Gnomad AMI
AF:
0.00
Gnomad AMR
AF:
0.00
Gnomad ASJ
AF:
0.00
Gnomad EAS
AF:
0.00
Gnomad SAS
AF:
0.00
Gnomad FIN
AF:
0.00
Gnomad MID
AF:
0.00
Gnomad NFE
AF:
0.0000147
Gnomad OTH
AF:
0.00
GnomAD2 exomes
AF:
0.00000399
AC:
1
AN:
250342
AF XY:
0.00
show subpopulations
Gnomad AFR exome
AF:
0.00
Gnomad AMR exome
AF:
0.0000290
Gnomad ASJ exome
AF:
0.00
Gnomad EAS exome
AF:
0.00
Gnomad FIN exome
AF:
0.00
Gnomad NFE exome
AF:
0.00
Gnomad OTH exome
AF:
0.00
GnomAD4 exome
AF:
0.00000547
AC:
8
AN:
1461234
Hom.:
0
Cov.:
32
AF XY:
0.00000550
AC XY:
4
AN XY:
726892
show subpopulations
African (AFR)
AF:
0.00
AC:
0
AN:
33472
American (AMR)
AF:
0.0000447
AC:
2
AN:
44698
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
26132
East Asian (EAS)
AF:
0.00
AC:
0
AN:
39700
South Asian (SAS)
AF:
0.00
AC:
0
AN:
86178
European-Finnish (FIN)
AF:
0.0000188
AC:
1
AN:
53142
Middle Eastern (MID)
AF:
0.000179
AC:
1
AN:
5590
European-Non Finnish (NFE)
AF:
0.00000360
AC:
4
AN:
1111948
Other (OTH)
AF:
0.00
AC:
0
AN:
60374
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.494
Heterozygous variant carriers
0
1
2
2
3
4
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Exome Het
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
GnomAD4 genome
AF:
0.0000132
AC:
2
AN:
151480
Hom.:
0
Cov.:
33
AF XY:
0.00
AC XY:
0
AN XY:
73970
show subpopulations
African (AFR)
AF:
0.0000243
AC:
1
AN:
41138
American (AMR)
AF:
0.00
AC:
0
AN:
15220
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
3466
East Asian (EAS)
AF:
0.00
AC:
0
AN:
5166
South Asian (SAS)
AF:
0.00
AC:
0
AN:
4784
European-Finnish (FIN)
AF:
0.00
AC:
0
AN:
10498
Middle Eastern (MID)
AF:
0.00
AC:
0
AN:
316
European-Non Finnish (NFE)
AF:
0.0000147
AC:
1
AN:
67908
Other (OTH)
AF:
0.00
AC:
0
AN:
2072
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.475
Heterozygous variant carriers
0
0
1
1
2
2
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Genome Het
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
Alfa
AF:
0.0000712
Hom.:
0
Bravo
AF:
0.0000264

ClinVar

Significance: Pathogenic
Submissions summary: Pathogenic:13
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

not provided Pathogenic:5
Aug 12, 2024
GeneDx
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Identified in patients with long QT syndrome (LQTS) (PMID: 12702160, 24388587, 15913580); Frameshift variant predicted to result in protein truncation or nonsense mediated decay in a gene for which loss-of-function is a known mechanism of disease; Not observed at significant frequency in large population cohorts (gnomAD); This variant is associated with the following publications: (PMID: 15913580, 26669661, 32470535, 24388587, 12702160, 28364778)

Joint Genome Diagnostic Labs from Nijmegen and Maastricht, Radboudumc and MUMC+
Significance:Pathogenic
Review Status:no assertion criteria provided
Collection Method:clinical testing

Jan 15, 2020
Revvity Omics, Revvity
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Clinical Genetics, Academic Medical Center
Significance:Pathogenic
Review Status:no assertion criteria provided
Collection Method:clinical testing

Stanford Center for Inherited Cardiovascular Disease, Stanford University
Significance:Pathogenic
Review Status:no assertion criteria provided
Collection Method:provider interpretation

Long QT syndrome Pathogenic:3
Feb 08, 2024
All of Us Research Program, National Institutes of Health
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The c.1343dup (p.Glu449Argfs*14) variant is located in exon 10 of the KCNQ1 gene. This 1bp duplication is predicted to shift the reading frame such that it introduces a premature translation termination codon. It is expected to result in an absent or disrupted protein product. This variant has been reported in individuals with long QT syndrome in heterozygosity (PMID: 36102233, 32383558, 24388587, 15840476, 12702160), and in individuals with Jervell and Lange-Nielsen Syndrome in homozygosity or compound heterozygosity (PMID: 26669661, 28364778). Loss-of-function variants in KCNQ1 gene are known to be pathogenic (PMID: 9323054, 19862833). ClinVar contains an entry for this variant (ID: 52978). This variant is rare (1/250342 chromosomes) in the general population database (gnomAD). Based on the available evidence, this variant is classified as pathogenic.

Sep 28, 2023
Human Genome Sequencing Center Clinical Lab, Baylor College of Medicine
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The c.1343dup (p.Glu449Argfs*14) variant is located in exon 10 of the KCNQ1 gene. This 1bp duplication is predicted to shift the reading frame such that it introduces a premature translation termination codon. It is expected to result in an absent or disrupted protein product. This variant has been reported in individuals with long QT syndrome in heterozygosity (PMID: 36102233, 32383558, 24388587, 15840476, 12702160), and in individuals with Jervell and Lange-Nielsen Syndrome in homozygosity or compound heterozygosity (PMID: 26669661, 28364778). Loss-of-function variants in KCNQ1 gene are known to be pathogenic (PMID: 9323054, 19862833). ClinVar contains an entry for this variant (ID: 52978). This variant is rare (1/250342 chromosomes) in the general population database (gnomAD). Based on the available evidence, this variant is classified as pathogenic.

Mar 18, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This sequence change creates a premature translational stop signal (p.Glu449Argfs*14) in the KCNQ1 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in KCNQ1 are known to be pathogenic (PMID: 9323054, 19862833). This variant is present in population databases (rs397508088, gnomAD 0.003%). This premature translational stop signal has been observed in individual(s) with long QT syndrome or suspected long QT syndrome (PMID: 12702160, 24388587, 26669661). This variant is also known as c.1338insC. ClinVar contains an entry for this variant (Variation ID: 52978). For these reasons, this variant has been classified as Pathogenic.

Long QT syndrome 1 Pathogenic:2
Aug 01, 2023
Molecular Genetics Laboratory - Cardiogenetics, CHU de Nantes
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Mar 26, 2025
Victorian Clinical Genetics Services, Murdoch Childrens Research Institute
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This variant is classified as Pathogenic. Evidence in support of pathogenic classification: Variant is predicted to cause nonsense-mediated decay (NMD) and loss of protein (premature termination codon is located at least 54 nucleotides upstream of the final exon-exon junction); Variant is present in gnomAD <0.01 (v4: 10 heterozygote(s), 0 homozygote(s)); This variant has strong previous evidence of pathogenicity in unrelated individuals. This variant has been classified as pathogenic by multiple clinical laboratories in ClinVar; Other NMD-predicted variant(s) comparable to the one identified in this case have very strong previous evidence for pathogenicity (DECIPHER). Additional information: This variant is heterozygous; This gene is known to be associated with both recessive and dominant disease. JLNS is characterised by congenital, bilateral deafness and variable degrees of QT prolongation, and is the only condition caused by biallelic variants (PMID: 28438721); Dominant negative, loss of function and gain of function are known mechanisms of disease in this gene. Gain of function variants result exclusively in short QT syndrome 2 (MIM#609621), while dominant negative and loss of function variants can cause long QT syndrome 1 (LQTS, MIM#192500), familial atrial fibrillation 3 (MIM#607554) as well as Jervell and Lange-Nielsen syndrome (JLNS, MIM#220400) (OMIM, PMIDs: 19632626, 28438721); The condition associated with this gene has incomplete penetrance (OMIM, PMID: 20301308); Inheritance information for this variant is not currently available in this individual.

Atrial fibrillation, familial, 3;C1865019:Short QT syndrome type 2;C4551509:Jervell and Lange-Nielsen syndrome 1;C4551647:Long QT syndrome 1 Pathogenic:1
Jan 30, 2024
Fulgent Genetics, Fulgent Genetics
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Congenital long QT syndrome Pathogenic:1
Mar 18, 2021
Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The p.Glu449ArgfsX14 variant in KCNQ1 has been reported in at least 2 individuals with long QT syndrome (LQTS; Chen 2003 PMID: 12702160, Itoh 2016 PMID: 26669661). This variant has also been reported in in 2 individuals with Jervell and Lange-Nielsen syndrome (JLNS): in 1 homozygote (Adadi 2017 PMID: 28364778) and 1 heterozygote in whom a variant affecting the other copy of KCNQ1 was not identified (Chang 2014 PMID: 24388587). This variant has also been reported by other clinical laboratories in Clinvar (Variation ID: 52978) and has been identified in 0.003% (1/34524) of Latino chromosomes by gnomAD (http://gnomad.broadinstitute.org). This variant is predicted to cause a frameshift, which alters the protein’s amino acid sequence beginning at position 449 and leads to a premature termination codon 14 amino acids downstream. This alteration is then predicted to lead to a truncated or absent protein. Loss of function of the KCNQ1 gene is an established disease mechanism in autosomal dominant LQTS and in autosomal recessive JLNS. In summary, this variant meets criteria to be classified as pathogenic for autosomal dominant LQTS (ACMG/AMP Criteria applied: PVS1, PM2_Supporting, PS4_Supporting) and in autosomal recessive JLNS (ACMG/AMP Criteria applied: PVS1, PM2_Supporting, PM3_Supporting).

Cardiovascular phenotype Pathogenic:1
Jan 17, 2023
Ambry Genetics
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The c.1343dupC pathogenic mutation, located in coding exon 10 of the KCNQ1 gene, results from a duplication of C at nucleotide position 1343, causing a translational frameshift with a predicted alternate stop codon (p.E449Rfs*14). This alteration has been reported in subjects with long QT syndrome (LQTS) (Chen S et al. Clin Genet, 2003 Apr;63:273-82; Kapa S et al. Circulation, 2009 Nov;120:1752-60; Chang RK et al. J Pediatr, 2014 Mar;164:590-5.e1-3). This alteration was also reported as homozygous in a subject with congenital hearing loss and prolonged QT interval (Adadi N et al. J Med Case Rep, 2017 Apr;11:88). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation.

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
PhyloP100
0.071
Mutation Taster
=4/196
disease causing (ClinVar)

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

Other links and lift over

dbSNP: rs397508087; hg19: chr11-2610028; API