11-2662023-G-C
Position:
Variant summary
Our verdict is Uncertain significance. Variant got 2 ACMG points: 2P and 0B. PM2
The NM_000218.3(KCNQ1):c.1456G>C(p.Ala486Pro) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. Variant has been reported in ClinVar as Uncertain significance (★).
Frequency
Genomes: not found (cov: 33)
Consequence
KCNQ1
NM_000218.3 missense
NM_000218.3 missense
Scores
5
5
9
Clinical Significance
Conservation
PhyloP100: 2.39
Genes affected
KCNQ1 (HGNC:6294): (potassium voltage-gated channel subfamily Q member 1) This gene encodes a voltage-gated potassium channel required for repolarization phase of the cardiac action potential. This protein can form heteromultimers with two other potassium channel proteins, KCNE1 and KCNE3. Mutations in this gene are associated with hereditary long QT syndrome 1 (also known as Romano-Ward syndrome), Jervell and Lange-Nielsen syndrome, and familial atrial fibrillation. This gene exhibits tissue-specific imprinting, with preferential expression from the maternal allele in some tissues, and biallelic expression in others. This gene is located in a region of chromosome 11 amongst other imprinted genes that are associated with Beckwith-Wiedemann syndrome (BWS), and itself has been shown to be disrupted by chromosomal rearrangements in patients with BWS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2011]
KCNQ1OT1 (HGNC:6295): (KCNQ1 opposite strand/antisense transcript 1) Human chromosomal region 11p15.5 contains two clusters of epigenetically-regulated genes that are expressed from only one chromosome in a parent-of-origin manner. Each cluster, or imprinted domain, is regulated by a functionally independent imprinting control region (ICR). The human CDKN1C/KCNQ1OT1 domain is regulated by an ICR located in an intron of KCNQ1, and contains at least eight genes that are expressed exclusively or preferentially from the maternally-inherited allele. The DNA of the ICR is specifically methylated on the maternally-inherited chromosome, and unmethylated on the paternally-inherited chromosome. The ICR contains the promoter of the KCNQ1OT1 gene that is exclusively expressed from the paternal allele. The KCNQ1OT1 transcript is the antisense to the KCNQ1 gene and is a unspliced long non-coding RNA. It interacts with chromatin and regulates transcription of multiple target genes through epigenetic modifications. The transcript is abnormally expressed from both chromosomes in most patients with Beckwith-Wiedemann syndrome, and the transcript also plays an important role in colorectal carcinogenesis. [provided by RefSeq, Apr 2012]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Uncertain_significance. Variant got 2 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
KCNQ1 | NM_000218.3 | c.1456G>C | p.Ala486Pro | missense_variant | 11/16 | ENST00000155840.12 | NP_000209.2 | |
KCNQ1OT1 | NR_002728.3 | n.37976C>G | non_coding_transcript_exon_variant | 1/1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
KCNQ1 | ENST00000155840.12 | c.1456G>C | p.Ala486Pro | missense_variant | 11/16 | 1 | NM_000218.3 | ENSP00000155840 | P1 | |
KCNQ1OT1 | ENST00000710656.1 | n.376-20908C>G | intron_variant, non_coding_transcript_variant |
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD3 genomes
Cov.:
33
GnomAD4 exome Cov.: 34
GnomAD4 exome
Cov.:
34
GnomAD4 genome Cov.: 33
GnomAD4 genome
Cov.:
33
ClinVar
Significance: Uncertain significance
Submissions summary: Uncertain:1
Revision: criteria provided, single submitter
LINK: link
Submissions by phenotype
Long QT syndrome Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Aug 28, 2015 | In summary, this is a novel missense change that is not predicted to affect protein function or cause disease. However, the evidence is insufficient at this time to prove that conclusively. It has been classified as a Variant of Uncertain Significance. Algorithms developed to predict the effect of missense changes on protein structure and function (SIFT, PolyPhen-2, Align-GVGD) all suggest that this variant is likely to be tolerated, but these predictions have not been confirmed by published functional studies. This variant is not present in population databases and has not been reported in the literature. This sequence change replaces alanine with proline at codon 486 of the KCNQ1 protein (p.Ala486Pro). The alanine residue is moderately conserved and there is a small physicochemical difference between alanine and proline. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Benign
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Benign
DANN
Uncertain
DEOGEN2
Uncertain
D;.;.
Eigen
Benign
Eigen_PC
Benign
FATHMM_MKL
Benign
D
LIST_S2
Uncertain
D;D;D
M_CAP
Pathogenic
D
MetaRNN
Uncertain
D;D;D
MetaSVM
Pathogenic
D
MutationAssessor
Benign
L;.;.
MutationTaster
Benign
N;N
PrimateAI
Uncertain
T
PROVEAN
Benign
N;.;N
REVEL
Pathogenic
Sift
Benign
D;.;T
Sift4G
Benign
T;.;T
Polyphen
D;.;B
Vest4
MutPred
Gain of disorder (P = 0.0197);.;.;
MVP
MPC
ClinPred
T
GERP RS
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at