Pathogenic, no assertion criteria provided | research | CSER _CC_NCGL, University of Washington | Jun 01, 2014 | - - |
Pathogenic, no assertion criteria provided | clinical testing | Department of Laboratory Medicine and Genetics, Trillium Health Partners Credit Valley Hospital | Dec 08, 2014 | Reduced enzyme activity, 10%-20% of normal - |
Pathogenic, criteria provided, single submitter | clinical testing | Fulgent Genetics, Fulgent Genetics | Feb 07, 2022 | - - |
not provided, no classification provided | literature only | GeneReviews | - | - - |
Pathogenic, no assertion criteria provided | curation | Reproductive Health Research and Development, BGI Genomics | Jan 06, 2020 | NM_000295.4:c.1096G>A (p.Glu366Lys) was reported as p.Glu342Lys, or the Z allele or PI*Z. It has an allele frequency of 0.018 in European (no Finnish) subpopulation in the gnomAD database. Functional studies demonstrate that that this variant plays as an inhibitor of neutrophil elastase and it forms polymers in the lung (PMID: 9569237), and alters the global structural dynamics of alpha-1-Antitrypsin (PMID: 25181470). The Glu342Lys accounts for 95% of all clinical cases of alpha-1-antitrypsin deficiency (PMID: 15978931). Pathogenic computational verdict because pathogenic predictions from DANN, DEOGEN2, EIGEN, FATHMM-MKL, MutationAssessor, MutationTaster, PrimateAI, REVEL and SIFT. Taken together, we interprete this variant as Pathogenic/Likely pathogenic. ACMG/AMP criteria applied: PS3; PS4; PP4; PP3; BS1. - |
Pathogenic, criteria provided, single submitter | clinical testing | Center for Genomics, Ann and Robert H. Lurie Children's Hospital of Chicago | Mar 30, 2021 | SERPINA1 NM_000295.4 exon 5 p.Glu366Lys (c.1096G>A): This variant, also referred to in the literature as Glu342Lys, is commonly known as the Z allele and is responsible for a large majority of cases of alpha-1-antitrypsin deficiency (A1ATD). It has been reported in the literature in the homozygous state in numerous indivdiuals with severe A1ATD (Brantly 1991 PMID:1889260, Calapoglu 2009 PMID:19083091, Pan 2009 PMID:19444872, Ferrarotti 2012 PMID:22426792, Schaefer 2015 PMID:26310624). In the heterozygous state, it is reported to be a risk factor for COPD, emphysema, and liver disease (Bartlett 2009 PMID:19738092, Ferrarotti 2012 PMID:22426792, Thun 2012 PMID:22912729, Li 2018 PMID:30068317). This variant is also present in 2.1% (1356/64560) of European alleles in the Genome Aggregation Database, including 41 homozygotes (https://gnomad.broadinstitute.org/variant/14-94378610-C-T?dataset=gnomad_r3). Please note, disease causing variants may be present in control databases at low frequencies, reflective of the general population, carrier status, and/or variable expressivity. This variant is present in ClinVar, with several labs classifying this variant as pathogenic (Variation ID:17967). Evolutionary conservation and computational predictive tools suggest that this variant may impact the protein. In addition, functional studies have shown that this variant leads to misfolding and accumulation of protein in hepatocyte endoplasmic reticulum. (Pan 2009 PMID:19444872, Kass 2012 PMID:22735536, Hughes 2013 PMID:25181470). However, these studies may not accurately represent in vivo biological function. In summary, this variant is classified as pathogenic based on the data above. - |
Pathogenic, criteria provided, single submitter | clinical testing | Knight Diagnostic Laboratories, Oregon Health and Sciences University | Jan 27, 2016 | In homozygous state this variant is the majorcause of severe alpha-1 antitrypsin deficiency (95%) and the mutant protein level is only 10-15% of the normal protein - |
Pathogenic, criteria provided, single submitter | clinical testing | Victorian Clinical Genetics Services, Murdoch Childrens Research Institute | Oct 09, 2024 | Based on the classification scheme VCGS_Germline_v1.3.4, this variant is classified as Pathogenic. Following criteria are met: 0102 - Loss of function is a known mechanism of disease in this gene and is associated with alpha-1-antitrypsin deficiency (MIM#613490). (I) 0106 - This gene is associated with autosomal recessive disease. (I) 0200 - Variant is predicted to result in a missense amino acid change from glutamic acid to lysine. (I) 0252 - This variant is homozygous. (I) 0305 - Variant is present in gnomAD >=0.01 and <0.03 for a recessive condition (v2: 3124 heterozygotes, 26 homozygotes). (I) 0309 - An alternative amino acid change at the same position has been observed in gnomAD (v2) (7 heterozygotes, 0 homozygotes). (I) 0501 - Missense variant consistently predicted to be damaging by multiple in silico tools or highly conserved with a major amino acid change. (SP) 0600 - Variant is located in the annotated Serpin domain (DECIPHER, NCBI conserved domain). (I) 0801 - This variant has strong previous evidence of pathogenicity in unrelated individuals. Also known as PI*Z, this is the most common pathogenic allele causing alpha-1-antitrypsin deficiency (ClinVar; PMID: 15978931, 20301692). (SP) 1208 - Inheritance information for this variant is not currently available in this individual. (I) Legend: (SP) - Supporting pathogenic, (I) - Information, (SB) - Supporting benign - |
Pathogenic, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jun 14, 2016 | The c.1096G>A (p.Glu366Lys) variant is widely reported in the literature and is also known as p.Glu342Lys, or more commonly, the Z allele. The p.Glu366Lys variant is the most common deficiency allele accounting for approximately ninety-five percent of clinically recognized cases of alpha-1 antitrypsin deficiency (AATD) (Stoller et al. 2014) and is reported at a frequency of 0.03030 in Utah residents with northern and western European ancestry from the 1000 Genomes Project. This frequency is high but consistent with disease prevalence. The severity of the AATD depends on genotype, with individuals who are homozygous for the p.Glu366Lys variant being at risk of developing both chronic obstructive pulmonary disease (COPD), including emphysema and liver disease. Homozygosity for the variant is a common cause of neonatal cholestasis. The p.Glu366Lys variant rarely leads to AATD-related symptoms in heterozygous individuals (American Thoracic Society 2003; Stoller et al. 2014). Individuals who are homozygous for the p.Glu366Lys variant have approximately 20% of normal circulating alpha-1-antitrypsin levels and individuals who are heterozygous have approximately 61% (Calapoglu et al. 2009; Bornhurst et al. 2013). The decreased serum levels result in decreased functional activity of the AAT protein (Stoller et al. 2014). At least three studies have demonstrated that the low levels of serum AAT are a result of the p.Glu366Lys variant causing an accumulation of the protein in the endoplasmic reticulum of the hepatocyte with subsequent damage to the cells leading to liver disease (Dycaico et al. 1988; Lomas et al. 1992; Hughes et al. 2014). Bartlett et al. (2009) reported that the p.Glu366Lys variant is also a risk factor for liver disease in individuals with cystic fibrosis. Based on the collective evidence, the p.Glu366Lys variant is classified as pathogenic for alpha-1 antitrypsin deficiency. - |
Pathogenic, criteria provided, single submitter | clinical testing | Clinical Genomics Laboratory, Washington University in St. Louis | Oct 10, 2023 | The SERPINA1 c.1096G>A (p.Glu366Lys) variant, also known as Gly342Lys or more commonly the Z allele, has been reported in the homozygous and compound heterozygous state in individuals with alpha1-antitrypsin deficiency and is reported as the most common pathogenic variant (Bornhorst JA et al., PMID: 23632999; Calapoğlu et al., PMID: 19083091; Stoller JK et al., PMID: 20301692; Stoller JK and Aboussouan LS, PMID: 21960536). While this variant rarely leads to alpha1-antitrypsin deficiency in heterozygous individuals, individuals that carry this variant in the heterozygous state have an increased risk for developing chronic obstructive pulmonary disease or liver disease (OR: 2.31-7.3; Hersh CP et al., PMID: 15454649; Strnad P et al., PMID: 30068662; Topic A et al., PMID: 22971141). This variant has been reported in the ClinVar database as a germline risk factor or pathogenic variant by many submitters. The highest population minor allele frequency in the population database genome aggregation database (v.2.1.1) is 1.8% in the European (non-Finnish) population which is not inconsistent with the prevalence of alpha1-antitrypsin deficiency (Brode SK et al., PMID: 22761482). The amino acid at this position is critical for protein function (Huang X et al., PMID: 27246852) and computational predictors indicate that the variant is damaging, evidence that correlates with impact to SERPINA1 function. In support of this prediction, functional studies show this variant leads to an accumulation of the protein leading to liver damage, indicating that this variant impacts protein function (Dycaico MJ et al., PMID: 3264419; Lomas DA et al., PMID: 1608473). Based on available information and the ACMG/AMP guidelines for variant interpretation (Richards S et al., PMID: 25741868), this variant is classified as pathogenic. - |
Pathogenic, criteria provided, single submitter | clinical testing | Baylor Genetics | Mar 30, 2024 | - - |
Pathogenic, criteria provided, single submitter | clinical testing | Mendelics | May 28, 2019 | - - |
Pathogenic, criteria provided, single submitter | clinical testing | Myriad Genetics, Inc. | Dec 26, 2019 | NM_000295.4(SERPINA1):c.1096G>A(E366K, aka Z allele) is classified as pathogenic in the context of alpha-1 antitrypsin deficiency. Sources cited for classification include the following: PMID 3264419, 18515255 and 3484754. Classification of NM_000295.4(SERPINA1):c.1096G>A(E366K, aka Z allele) is based on the following criteria: This is a well-established pathogenic variant in the literature that has been observed more frequently in patients with clinical diagnoses than in healthy populations. Please note: this variant was assessed in the context of healthy population screening. - |
Pathogenic, criteria provided, single submitter | research | UNC Molecular Genetics Laboratory, University of North Carolina at Chapel Hill | - | The SERPINA1 c.1096G>A, (p.E366K) variant (also known as the Z allele) is seen in 1.1% of the human population (gnomAD). It is reported as the most common pathogenic allele associated with alpha-1 antitrypsin deficiency (AATD). Individuals homozygous for the Z allele typically have severe AATD (PMID: 15978931). - |
Pathogenic, criteria provided, single submitter | clinical testing | Rady Children's Institute for Genomic Medicine, Rady Children's Hospital San Diego | Aug 21, 2018 | The c.1096G>A (p.Glu366Lys) variant is widely reported in the literature. It is also referred to as p.Glu342Lys using alternate nomenclature, or is commonly referred to as the Z allele. Individuals homozygous for the p.Glu366Lys variant are at the highest risk for Alpha-1 antitripsin deficiency (AATD) and at risk of developing both chronic obstructive pulmonary disease (COPD), emphysema, liver disease and neonatal cholestasis. The homozygous ZZ allele genotype is a commonly recognized genetic cause of clinically recognized cases of AATD (PMID: 21960536). Individuals homozygous for the p.Glu366Lys variant have approximately 20% of normal circulating alpha-1-antitrypsin levels while individuals who are heterozygous have approximately 61% (PMID: 19083091). It is present in the heterozygous state in the ExAC population database at a frequency of 1.17% (1410/120530) and in the homozygous state in 11 individuals. Based on the available evidence, this variant is classified as pathogenic. - |
Pathogenic, criteria provided, single submitter | clinical testing | DASA | Jan 05, 2022 | The c.1096G>A;p.(Glu366Lys) missense variant has been observed in affected individual(s) and ClinVar contains an entry for this variant ClinVar ID: 17967; PMID: 20301692; 29644095; 29618937; 26987331: 20301692) - PS4. Well-established in vitro or in vivo functional studies support a damaging effect on the gene or gene product (PMID: 2904702, PMID: 19398551; PMID: 3500183) - PS3_supporting. The variant is located in a mutational hot spot and/or critical and well-established functional domain (Serpin domain) - PM1. The p.(Glu366Lys) was detected in trans with a pathogenic variant (PMID: 29882371; 26987331) - PM3_very strong Multiple lines of computational evidence support a deleterious effect on the gene or gene product - PP3. and allele frequency is greater than expected for disorder -BS1. In summary, the currently available evidence indicates that the variant is pathogenic. - |
Pathogenic, no assertion criteria provided | clinical testing | Diagnostic Laboratory, Department of Genetics, University Medical Center Groningen | - | - - |
Pathogenic, no assertion criteria provided | research | Genomics And Bioinformatics Analysis Resource, Columbia University | - | - - |
Pathogenic, criteria provided, single submitter | clinical testing | Laboratorio de Genetica e Diagnostico Molecular, Hospital Israelita Albert Einstein | Nov 29, 2022 | ACMG classification criteria: PS3 supporting, PM3 very strong, PP4 - |
Pathogenic, criteria provided, single submitter | clinical testing | MGZ Medical Genetics Center | Jul 11, 2022 | - - |
Pathogenic, criteria provided, single submitter | clinical testing | Human Genome Sequencing Center Clinical Lab, Baylor College of Medicine | Jun 05, 2017 | The c.1096G>A (p.Glu366Lys) variant in the SERPINA1 gene is a common pathogenic variant for alpha1-antitrypsin deficiency and is referred to the Z allele [PMID 6306478]. This variant has been reported in multiple patients with emphysema and liver disease [PMID 23858502, 19083091, 19444872, 26310624, 22912729]. This variant is common in the general population (up to 1.8%). Individual homozygous for this change have severe alpha-1 antitrypsin deficiency and are at risk to develop emphysema: plasma concentrations of alpha1-antitrypsin in homozygous individuals have been reported to be about 22% compared to normal [PMID 19083091]. Individual compound heterozygous for this change and another pathogenic variant (S allele or null allele) have variable alpha-1 antitrypsin deficiency depending on the allele in trans and are at risk to develop emphysema. This variant is classified as pathogenic. <BR>Apparent homozygosity of this variant may be caused by the presence of the mutant allele on both alleles of this individual, or the presence of a mutant allele on one allele and an exonic deletion on the opposite allele. Copy number variant (CNV) analysis or segregation analysis is necessary to assess the apparent homozygosity status of this variant. - |
Pathogenic, no assertion criteria provided | research | Division of Human Genetics, Children's Hospital of Philadelphia | Jun 10, 2016 | - - |
Pathogenic, criteria provided, single submitter | clinical testing | Women's Health and Genetics/Laboratory Corporation of America, LabCorp | Aug 31, 2022 | Variant summary: SERPINA1 (formerly known as PI) c.1096G>A (p.Glu366Lys; aka Glu342Lys) results in a conservative amino acid change in the encoded protein sequence. Four of five in-silico tools predict a damaging effect of the variant on protein function. The variant allele was found at a frequency of 0.011 in 251360 control chromosomes, predominantly at a frequency of 0.018 within the European subpopulation in the gnomAD database, including 17 homozygotes. Although the variant reaches polymorphic frequencies in Caucasians, this occurrence is consistent with the disease prevalence (see e.g. Stoller_2005, de Serres_2012, Blanco_2020). The variant, c.1096G>A (commonly known as the Z allele, or PI*Z allele) is reported as the most frequent alpha-1 antitrypsin deficiency allele, and individuals who are homozygous for the variant are at high risk for both lung- and liver disease, reportedly with 80-100% risk for developing emphysema (see e.g. Brantly_1991, Stoller_2005, Bornhorst_2013, Ferrarotti_2012, Stoller_2020, Tejwani_2021, Patel_2021). While nonsmoking heterozygotes are generally not considered to be at significantly increased risk for lung disease, smoking heterozygotes are at increased risk for COPD (Stoller_2020, Tejwani_2021). Several publications reported loss-of-function mechanism for the variant, i.e. homozygous individuals have a serum concentration of alpha-1 antitrypsin (AAT) that is approximately 10%-20% of normal, and the ability of the variant protein to inhibit neutrophil elastase is also decreased (e.g. Ogushi_1987, Bornhorst_2013). In addition, several studies also reported a gain-of-function mechanism for the variant, demonstrating that it can form (toxic) intracellular aggregates, and extracellular polymers with chemotactic properties for neutrophils, resulting in an exacerbated proinflammatory phenotype, especially in response to cigarette smoke (e.g. Elliott_1998, Parmar_2002, Alam_2014). 23 clinical diagnostic laboratories have submitted clinical-significance assessments for this variant to ClinVar after 2014, and all classified the variant as pathogenic. Based on the evidence outlined above, the variant was classified as pathogenic. - |
Pathogenic, criteria provided, single submitter | clinical testing | Greenwood Genetic Center Diagnostic Laboratories, Greenwood Genetic Center | Jun 30, 2022 | PS3, PS4, PM3, PP3 - |
Pathogenic, criteria provided, single submitter | clinical testing | Institute of Immunology and Genetics Kaiserslautern | Mar 12, 2024 | ACMG Criteria: PS3, PS4, PM3, PP1_S, PP3, PP5; Individual was compound heterozygous for SERPINA1 variants c.839A>T and c.1096G>A - |
Pathogenic, criteria provided, single submitter | clinical testing | Undiagnosed Diseases Network, NIH | Jan 06, 2022 | This individual is homozygous for a well documented variant known as the Z allele that causes a severe form of alpha-1 antitrypsin deficiency. - |
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Jan 31, 2024 | This sequence change replaces glutamic acid, which is acidic and polar, with lysine, which is basic and polar, at codon 366 of the SERPINA1 protein (p.Glu366Lys). This variant is present in population databases (rs28929474, gnomAD 1.8%), and has an allele count higher than expected for a pathogenic variant. This variant, also referred to as PI*Z allele or Z allele, is a well known cause of severe alpha-1 antitrypsin (AAT) deficiency in the literature (PMID: 15978931, 22426792, 23632999, 1889260). It is associated with an 80%-100% risk of developing emphysema when it is found in the homozygous state, and a 20-50% risk when it is found as a compound heterozygote with the S allele (PMID: 15978931, 22933512). This variant is also known as p.Glu342Lys in the literature. It has also been observed to segregate with disease in related individuals. ClinVar contains an entry for this variant (Variation ID: 17967). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) has been performed at Invitae for this missense variant, however the output from this modeling did not meet the statistical confidence thresholds required to predict the impact of this variant on SERPINA1 protein function. Experimental studies have shown that this missense change is five times less effective than the normal M allele as an inhibitor of neutrophil elastase and it forms polymers in the lung that can be chemoattractants for neutrophils, thereby increasing inflammation (PMID: 3500183, 9569237, 12034572). It has also been shown to alter the SERPINA1 protein natural conformation thereby contributing to the formation of polymers (PMID: 22735536, 25181470). For these reasons, this variant has been classified as Pathogenic. - |