17-7674217-C-G
Variant summary
Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PM1PM2PM5PP3_StrongPP5_Very_Strong
The NM_000546.6(TP53):c.746G>C(p.Arg249Thr) variant causes a missense change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,712 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. R249S) has been classified as Likely pathogenic.
Frequency
Consequence
NM_000546.6 missense
Scores
Clinical Significance
Conservation
Publications
- breast cancerInheritance: AD Classification: DEFINITIVE Submitted by: Ambry Genetics
- Li-Fraumeni syndromeInheritance: AD Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Labcorp Genetics (formerly Invitae), G2P, ClinGen, Orphanet
- Li-Fraumeni syndrome 1Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Ambry Genetics, Genomics England PanelApp
- adrenocortical carcinoma, hereditaryInheritance: AD Classification: STRONG Submitted by: Ambry Genetics
- sarcomaInheritance: AD Classification: STRONG Submitted by: Genomics England PanelApp
- bone marrow failure syndrome 5Inheritance: AD Classification: MODERATE Submitted by: Ambry Genetics
- colorectal cancerInheritance: AD Classification: MODERATE Submitted by: Ambry Genetics
- choroid plexus carcinomaInheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 18 ACMG points.
Transcripts
RefSeq
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
|---|---|---|---|---|---|---|---|---|
| TP53 | NM_000546.6 | c.746G>C | p.Arg249Thr | missense_variant | Exon 7 of 11 | ENST00000269305.9 | NP_000537.3 |
Ensembl
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
|---|---|---|---|---|---|---|---|---|---|---|
| TP53 | ENST00000269305.9 | c.746G>C | p.Arg249Thr | missense_variant | Exon 7 of 11 | 1 | NM_000546.6 | ENSP00000269305.4 |
Frequencies
GnomAD3 genomes Cov.: 30
GnomAD4 exome AF: 6.84e-7 AC: 1AN: 1461712Hom.: 0 Cov.: 32 AF XY: 0.00000138 AC XY: 1AN XY: 727160 show subpopulations ⚠️ The allele balance in gnomAD version 4 Exomes is significantly skewed from the expected value of 0.5.
Age Distribution
GnomAD4 genome Cov.: 30
ClinVar
Submissions by phenotype
Li-Fraumeni syndrome 1 Pathogenic:1
This variant is considered likely pathogenic. Functional studies indicate this variant impacts protein function [PMID: 29979965]. This variant is expected to disrupt protein structure [Myriad internal data]. -
not provided Pathogenic:1
- -
Hereditary cancer-predisposing syndrome Pathogenic:1
The p.R249T pathogenic mutation (also known as c.746G>C), located in coding exon 6 of the TP53 gene, results from a G to C substitution at nucleotide position 746. The arginine at codon 249 is replaced by threonine, an amino acid with similar properties. This variant is in the DNA binding domain of the TP53 protein and is reported to have loss of transactivation capacity in yeast based functional assays (IARC TP53 database; Kato S et al. Proc. Natl. Acad. Sci. USA. 2003 Jul;100:8424-9). Studies conducted in human cell lines indicate this alteration is deficient at growth suppression and has a dominant negative effect (Kotler E et al. Mol.Cell, 2018 Jul;71:178-190.e8; Giacomelli AO et al. Nat. Genet., 2018 Oct;50:1381-1387). This alteration, as well as other alterations at codon 249, have been observed numerous times somatically in the cancerhotspots.org database (Chang MT et al. Cancer Discov. 2018 02;8:174-183), however germline observations have not been reported. This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Based on the supporting evidence, this alteration is interpreted as a disease-causing mutation. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at