19-11107461-G-T

Variant summary

Our verdict is Pathogenic. Variant got 12 ACMG points: 12P and 0B. PM1PM2PM5PP3_StrongPP5_Moderate

The NM_000527.5(LDLR):​c.887G>T​(p.Cys296Phe) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. C296S) has been classified as Likely pathogenic.

Frequency

Genomes: not found (cov: 32)

Consequence

LDLR
NM_000527.5 missense

Scores

15
3
1

Clinical Significance

Likely pathogenic criteria provided, single submitter P:1

Conservation

PhyloP100: 9.87
Variant links:
Genes affected
LDLR (HGNC:6547): (low density lipoprotein receptor) The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. The encoded protein is normally bound at the cell membrane, where it binds low density lipoprotein/cholesterol and is taken into the cell. Lysosomes release the cholesterol, which is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation of cholesterol ester synthesis takes place. Mutations in this gene cause the autosomal dominant disorder, familial hypercholesterolemia. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2022]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Pathogenic. Variant got 12 ACMG points.

PM1
In a turn (size 3) in uniprot entity LDLR_HUMAN there are 5 pathogenic changes around while only 0 benign (100%) in NM_000527.5
PM2
Very rare variant in population databases, with high coverage;
PM5
Other missense variant is known to change same aminoacid residue: Variant chr19-11107460-T-A is described in Lovd as [Likely_pathogenic].
PP3
MetaRNN computational evidence supports a deleterious effect, 0.993
PP5
Variant 19-11107461-G-T is Pathogenic according to our data. Variant chr19-11107461-G-T is described in ClinVar as [Likely_pathogenic]. Clinvar id is 840389.Status of the report is criteria_provided_single_submitter, 1 stars.

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect #exon/exons MANE Protein UniProt
LDLRNM_000527.5 linkuse as main transcriptc.887G>T p.Cys296Phe missense_variant 6/18 ENST00000558518.6 NP_000518.1

Ensembl

Gene Transcript HGVSc HGVSp Effect #exon/exons TSL MANE Protein Appris UniProt
LDLRENST00000558518.6 linkuse as main transcriptc.887G>T p.Cys296Phe missense_variant 6/181 NM_000527.5 ENSP00000454071 P3P01130-1

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
Cov.:
32
GnomAD4 genome
Cov.:
32

ClinVar

Significance: Likely pathogenic
Submissions summary: Pathogenic:1
Revision: criteria provided, single submitter
LINK: link

Submissions by phenotype

Familial hypercholesterolemia Pathogenic:1
Likely pathogenic, criteria provided, single submitterclinical testingLabcorp Genetics (formerly Invitae), LabcorpNov 14, 2022In summary, the currently available evidence indicates that the variant is pathogenic, but additional data are needed to prove that conclusively. Therefore, this variant has been classified as Likely Pathogenic. This variant disrupts the p.Cys296 amino acid residue in LDLR. Other variant(s) that disrupt this residue have been determined to be pathogenic (PMID: 20809525, 21722902, 23375686, 24014831). This suggests that this residue is clinically significant, and that variants that disrupt this residue are likely to be disease-causing. This variant affects a cysteine residue located within an LDLRA or epidermal-growth-factor (EGF)-like domains of the LDLR protein. Cysteine residues in these domains have been shown to be involved in the formation of disulfide bridges, which are critical for protein structure and stability (PMID: 7548065, 7603991, 7979249). In addition, missense substitutions within the LDLRA and EGF-like domains affecting cysteine residues are overrepresented among patients with hypercholesterolemia (PMID: 18325082). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt LDLR protein function. ClinVar contains an entry for this variant (Variation ID: 840389). This variant has not been reported in the literature in individuals affected with LDLR-related conditions. This variant is not present in population databases (gnomAD no frequency). This sequence change replaces cysteine, which is neutral and slightly polar, with phenylalanine, which is neutral and non-polar, at codon 296 of the LDLR protein (p.Cys296Phe). -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
0.99
BayesDel_addAF
Pathogenic
0.59
D
BayesDel_noAF
Pathogenic
0.60
CADD
Pathogenic
28
DANN
Uncertain
0.99
DEOGEN2
Pathogenic
0.98
D;.;.;.;.;.
Eigen
Pathogenic
1.0
Eigen_PC
Pathogenic
0.84
FATHMM_MKL
Pathogenic
0.99
D
LIST_S2
Uncertain
0.90
D;D;D;D;D;D
M_CAP
Pathogenic
0.89
D
MetaRNN
Pathogenic
0.99
D;D;D;D;D;D
MetaSVM
Pathogenic
0.90
D
MutationAssessor
Pathogenic
5.1
H;.;.;.;.;H
MutationTaster
Benign
1.0
D;D;D;D;D;D;D
PrimateAI
Uncertain
0.75
T
PROVEAN
Pathogenic
-9.3
D;D;D;D;D;D
REVEL
Pathogenic
0.97
Sift
Pathogenic
0.0
D;D;D;D;D;D
Sift4G
Pathogenic
0.0010
D;D;D;D;D;D
Polyphen
1.0
D;.;.;.;.;.
Vest4
0.98
MutPred
0.89
Loss of disorder (P = 0.0808);Loss of disorder (P = 0.0808);.;.;.;Loss of disorder (P = 0.0808);
MVP
1.0
MPC
1.0
ClinPred
1.0
D
GERP RS
5.3
RBP_binding_hub_radar
0.0
RBP_regulation_power_radar
1.7
Varity_R
0.99
gMVP
0.99

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs879254707; hg19: chr19-11218137; API