2-47475042-C-T
Variant summary
Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000251.3(MSH2):c.1777C>T(p.Gln593*) variant causes a stop gained change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Pathogenic (★★★). Synonymous variant affecting the same amino acid position (i.e. Q593Q) has been classified as Likely benign. Variant results in nonsense mediated mRNA decay.
Frequency
Consequence
NM_000251.3 stop_gained
Scores
Clinical Significance
Conservation
Publications
- Lynch syndromeInheritance: AD Classification: DEFINITIVE, SUPPORTIVE Submitted by: G2P, ClinGen, Orphanet
- Lynch syndrome 1Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), Genomics England PanelApp, Ambry Genetics
- Muir-Torre syndromeInheritance: AD Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Genomics England PanelApp, Orphanet, G2P
- mismatch repair cancer syndrome 1Inheritance: AR Classification: DEFINITIVE, SUPPORTIVE Submitted by: ClinGen, Orphanet
- mismatch repair cancer syndrome 2Inheritance: AR Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), G2P
- ovarian cancerInheritance: AD Classification: STRONG Submitted by: Genomics England PanelApp
- malignant pancreatic neoplasmInheritance: AD Classification: MODERATE Submitted by: Genomics England PanelApp
- prostate cancerInheritance: AD Classification: MODERATE Submitted by: Ambry Genetics
- rhabdomyosarcomaInheritance: AR Classification: MODERATE Submitted by: Genomics England PanelApp
- breast cancerInheritance: AD Classification: NO_KNOWN Submitted by: Ambry Genetics
- hereditary breast carcinomaInheritance: AD Classification: NO_KNOWN Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 18 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD4 exome Cov.: 32
GnomAD4 genome Cov.: 32
ClinVar
Submissions by phenotype
Lynch syndrome 1 Pathogenic:2
- -
This variant is considered pathogenic. This variant creates a termination codon and is predicted to result in premature protein truncation. -
Lynch syndrome Pathogenic:1
Coding sequence variation introducing premature termination codon -
Lynch-like syndrome Pathogenic:1
- -
not provided Pathogenic:1
- -
Hereditary nonpolyposis colorectal neoplasms Pathogenic:1
For these reasons, this variant has been classified as Pathogenic. ClinVar contains an entry for this variant (Variation ID: 90783). This premature translational stop signal has been observed in individual(s) with Lynch syndrome (PMID: 15235038, 27601186). This variant is not present in population databases (gnomAD no frequency). This sequence change creates a premature translational stop signal (p.Gln593*) in the MSH2 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in MSH2 are known to be pathogenic (PMID: 15849733, 24362816). -
Hereditary cancer-predisposing syndrome Pathogenic:1
The p.Q593* pathogenic mutation (also known as c.1777C>T), located in coding exon 12 of the MSH2 gene, results from a C to T substitution at nucleotide position 1777. This changes the amino acid from a glutamine to a stop codon within coding exon 12. This mutation has been reported in multiple individuals with hereditary non-polyposis colorectal cancer (HNPCC)/Lynch syndrome, including patients meeting Amsterdam criteria and/or whose tumors demonstrated loss of MSH2 by immunohistochemistry (IHC) (Naseem H et al. Clin Genet, 2006 Nov;70:388-95; Lagerstedt-Robinson K et al. Oncol Rep, 2016 Nov;36:2823-2835; Sunga AY et al. Cancer Genet, 2017 04;212-213:1-7; Gong R et al. Cancer Manag Res, 2019 Apr;11:3721-3739; Tian W et al. Int J Cancer, 2019 09;145:1290-1298; Wischhusen JW et al. Cancer Epidemiol Biomarkers Prev, 2020 01;29:193-199). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at