Our verdict is Pathogenic. Variant got 12 ACMG points: 12P and 0B. PVS1PM2PP5_Moderate
The NM_000179.3(MSH6):c.3173-1G>T variant causes a splice acceptor, intron change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,880 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a pathogenic outcome for this variant. 3/3 splice prediction tools predicting alterations to normal splicing. Variant has been reported in ClinVar as Pathogenic (★).
MSH6 (HGNC:7329): (mutS homolog 6) This gene encodes a member of the DNA mismatch repair MutS family. In E. coli, the MutS protein helps in the recognition of mismatched nucleotides prior to their repair. A highly conserved region of approximately 150 aa, called the Walker-A adenine nucleotide binding motif, exists in MutS homologs. The encoded protein heterodimerizes with MSH2 to form a mismatch recognition complex that functions as a bidirectional molecular switch that exchanges ADP and ATP as DNA mismatches are bound and dissociated. Mutations in this gene may be associated with hereditary nonpolyposis colon cancer, colorectal cancer, and endometrial cancer. Transcripts variants encoding different isoforms have been described. [provided by RefSeq, Jul 2013]
FBXO11 (HGNC:13590): (F-box protein 11) This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbxs class. It can function as an arginine methyltransferase that symmetrically dimethylates arginine residues, and it acts as an adaptor protein to mediate the neddylation of p53, which leads to the suppression of p53 function. This gene is known to be down-regulated in melanocytes from patients with vitiligo, a skin disorder that results in depigmentation. Polymorphisms in this gene are associated with chronic otitis media with effusion and recurrent otitis media (COME/ROM), a hearing loss disorder, and the knockout of the homologous mouse gene results in the deaf mouse mutant Jeff (Jf), a single gene model of otitis media. Alternatively spliced transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jun 2010]
Verdict is Pathogenic. Variant got 12 ACMG points.
PVS1
Splicing +-2 bp (donor or acceptor) variant, LoF is a know mechanism of disease, Cryptic splice site detected, with MaxEntScore 3.4, offset of 28, new splice context is: ctgtgcctggctaactatAGtcg. Cryptic site results in frameshift change. If cryptic site found is not functional and variant results in exon loss, it results in frameshift change.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 2-47803419-G-T is Pathogenic according to our data. Variant chr2-47803419-G-T is described in ClinVar as [Pathogenic]. Clinvar id is 1728460.Status of the report is criteria_provided_single_submitter, 1 stars.
Review Status: criteria provided, single submitter
Collection Method: clinical testing
The c.3173-1G>T intronic pathogenic mutation results from a G to T substitution one nucleotide upstream from coding exon 5 of the MSH6 gene. Another pathogenic mutation (c.3173-1G>C) has been described at the same nucleotide position in multiple HNPCC families with probands' tumors exhibiting absent MSH2 and/or MSH6 staining on IHC (Ambry internal data). This variant was not reported in population-based cohorts in the Genome Aggregation Database (gnomAD). In silico splice site analysis predicts that this alteration will weaken the native splice acceptor site. Alterations that disrupt the canonical splice site are expected to cause aberrant splicing, resulting in an abnormal protein or a transcript that is subject to nonsense-mediated mRNA decay. As such, this alteration is classified as a disease-causing mutation. -