rs786202568
Variant summary
Our verdict is Likely pathogenic. Variant got 6 ACMG points: 6P and 0B. PM2PP3_Strong
The NM_000535.7(PMS2):c.322G>T(p.Gly108Trp) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★★).
Frequency
Genomes: not found (cov: 32)
Exomes 𝑓: 0.0 ( 0 hom. )
Failed GnomAD Quality Control
Consequence
PMS2
NM_000535.7 missense
NM_000535.7 missense
Scores
17
1
1
Clinical Significance
Conservation
PhyloP100: 7.30
Genes affected
PMS2 (HGNC:9122): (PMS1 homolog 2, mismatch repair system component) The protein encoded by this gene is a key component of the mismatch repair system that functions to correct DNA mismatches and small insertions and deletions that can occur during DNA replication and homologous recombination. This protein forms heterodimers with the gene product of the mutL homolog 1 (MLH1) gene to form the MutL-alpha heterodimer. The MutL-alpha heterodimer possesses an endonucleolytic activity that is activated following recognition of mismatches and insertion/deletion loops by the MutS-alpha and MutS-beta heterodimers, and is necessary for removal of the mismatched DNA. There is a DQHA(X)2E(X)4E motif found at the C-terminus of the protein encoded by this gene that forms part of the active site of the nuclease. Mutations in this gene have been associated with hereditary nonpolyposis colorectal cancer (HNPCC; also known as Lynch syndrome) and Turcot syndrome. [provided by RefSeq, Apr 2016]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Likely_pathogenic. Variant got 6 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
PP3
MetaRNN computational evidence supports a deleterious effect, 0.944
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
PMS2 | NM_000535.7 | c.322G>T | p.Gly108Trp | missense_variant | 4/15 | ENST00000265849.12 | NP_000526.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
PMS2 | ENST00000265849.12 | c.322G>T | p.Gly108Trp | missense_variant | 4/15 | 1 | NM_000535.7 | ENSP00000265849 | P3 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Data not reliable, filtered out with message: AC0;AS_VQSR AF: 0.00 AC: 0AN: 1445546Hom.: 0 Cov.: 29 AF XY: 0.00 AC XY: 0AN XY: 719782
GnomAD4 exome
Data not reliable, filtered out with message: AC0;AS_VQSR
AF:
AC:
0
AN:
1445546
Hom.:
Cov.:
29
AF XY:
AC XY:
0
AN XY:
719782
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Uncertain significance
Submissions summary: Uncertain:2
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Hereditary nonpolyposis colorectal neoplasms Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Oct 12, 2022 | In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt PMS2 protein function. ClinVar contains an entry for this variant (Variation ID: 926913). This missense change has been observed in individual(s) with colon cancer (PMID: 27978560). This variant is not present in population databases (gnomAD no frequency). This sequence change replaces glycine, which is neutral and non-polar, with tryptophan, which is neutral and slightly polar, at codon 108 of the PMS2 protein (p.Gly108Trp). - |
Hereditary cancer-predisposing syndrome Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Color Diagnostics, LLC DBA Color Health | Aug 26, 2019 | This missense variant replaces glycine with tryptophan at codon 108 of the PMS2 protein. Computational prediction tools and conservation analyses suggest that this variant may have deleterious impact on protein structure and function. Splice site prediction tools suggest that this variant may not impact RNA splicing. This variant has been reported in 1 individual affected with colorectal cancer (PMID: 27978560).This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). The available evidence is insufficient to determine the role of this variant in disease conclusively. Therefore, this variant is classified as a Variant of Uncertain Significance. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
DEOGEN2
Pathogenic
D;.
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Pathogenic
D
LIST_S2
Pathogenic
D;D
M_CAP
Pathogenic
D
MetaRNN
Pathogenic
D;D
MetaSVM
Pathogenic
D
MutationAssessor
Pathogenic
H;H
MutationTaster
Benign
D;D;D;D;D
PrimateAI
Pathogenic
D
PROVEAN
Pathogenic
D;D
REVEL
Pathogenic
Sift
Pathogenic
D;D
Sift4G
Pathogenic
D;D
Polyphen
D;D
Vest4
MutPred
Loss of methylation at R107 (P = 0.0298);Loss of methylation at R107 (P = 0.0298);
MVP
MPC
ClinPred
D
GERP RS
RBP_binding_hub_radar
RBP_regulation_power_radar
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at