rs876657721
Positions:
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_014363.6(SACS):βc.8542_8543delβ(p.Phe2848ProfsTer14) variant causes a frameshift change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,668 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Likely pathogenic (β β ).
Frequency
Genomes: not found (cov: 33)
Exomes π: 6.8e-7 ( 0 hom. )
Consequence
SACS
NM_014363.6 frameshift
NM_014363.6 frameshift
Scores
Not classified
Clinical Significance
Conservation
PhyloP100: 8.95
Genes affected
SACS (HGNC:10519): (sacsin molecular chaperone) This gene encodes the sacsin protein, which includes a UbL domain at the N-terminus, a DnaJ domain, and a HEPN domain at the C-terminus. The gene is highly expressed in the central nervous system, also found in skin, skeletal muscles and at low levels in the pancreas. This gene includes a very large exon spanning more than 12.8 kb. Mutations in this gene result in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disorder characterized by early-onset cerebellar ataxia with spasticity and peripheral neuropathy. The authors of a publication on the effects of siRNA-mediated sacsin knockdown concluded that sacsin protects against mutant ataxin-1 and suggest that "the large multi-domain sacsin protein is able to recruit Hsp70 chaperone action and has the potential to regulate the effects of other ataxia proteins" (Parfitt et al., PubMed: 19208651). A pseudogene associated with this gene is located on chromosome 11. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product does not undergo nonsense mediated mRNA decay. Variant is located in the 3'-most exon, not predicted to undergo nonsense mediated mRNA decay. There are 58 pathogenic variants in the truncated region.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 13-23335332-GAA-G is Pathogenic according to our data. Variant chr13-23335332-GAA-G is described in ClinVar as [Likely_pathogenic]. Clinvar id is 228394.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
SACS | NM_014363.6 | c.8542_8543del | p.Phe2848ProfsTer14 | frameshift_variant | 10/10 | ENST00000382292.9 | NP_055178.3 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
SACS | ENST00000382292.9 | c.8542_8543del | p.Phe2848ProfsTer14 | frameshift_variant | 10/10 | 5 | NM_014363.6 | ENSP00000371729 | P1 |
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD3 genomes
Cov.:
33
GnomAD4 exome AF: 6.84e-7 AC: 1AN: 1461668Hom.: 0 AF XY: 0.00000138 AC XY: 1AN XY: 727132
GnomAD4 exome
AF:
AC:
1
AN:
1461668
Hom.:
AF XY:
AC XY:
1
AN XY:
727132
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome Cov.: 33
GnomAD4 genome
Cov.:
33
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:3
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Charlevoix-Saguenay spastic ataxia Pathogenic:2
Likely pathogenic, criteria provided, single submitter | clinical testing | Genome-Nilou Lab | Sep 05, 2021 | - - |
Likely pathogenic, criteria provided, single submitter | clinical testing | Counsyl | Apr 11, 2018 | - - |
Autosomal recessive spastic ataxia Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine | Aug 08, 2015 | The p.Phe2848fs variant in SACS has not been previously reported in individuals with clinical features of autosomal recessive spastic ataxia of Charlevoix-Sague nay (ARSACS) or in large population studies. This variant is predicted to cause a frameshift, which alters the protein?s amino acid sequence beginning at positi on 2848 and leads to a premature termination codon 14 amino acids downstream. T his premature termination codon occurs within the last exon of the gene (exon 10 ), and is more likely to escape nonsense mediated decay (NMD). Therefore, this v ariant is predicted to result in a truncated protein that is 1718 amino acids sh orter and lacks several functional domains of the normal protein. Loss of functi on variants in the SACS gene, most of which occur in exon 10, have been reported in several patients with ARSACS (Bouhlal 2011), and animal models support a los s of function mechanism of disease (Lariviere 2015). In summary, this variant me ets our criteria to be classified as pathogenic for ARSACS in an autosomal reces sive manner (http://www.partners.org/personalizedmedicine/LMM). - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at