4-110617785-T-C
Position:
Variant summary
Our verdict is Benign. Variant got -7 ACMG points: 0P and 7B. BP4_ModerateBP6BS2
The NM_000325.6(PITX2):c.*340A>G variant causes a 3 prime UTR change. The variant allele was found at a frequency of 0.000428 in 310,718 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars).
Frequency
Genomes: 𝑓 0.00020 ( 0 hom., cov: 33)
Exomes 𝑓: 0.00064 ( 0 hom. )
Consequence
PITX2
NM_000325.6 3_prime_UTR
NM_000325.6 3_prime_UTR
Scores
2
Clinical Significance
Conservation
PhyloP100: 6.50
Genes affected
PITX2 (HGNC:9005): (paired like homeodomain 2) This gene encodes a member of the RIEG/PITX homeobox family, which is in the bicoid class of homeodomain proteins. The encoded protein acts as a transcription factor and regulates procollagen lysyl hydroxylase gene expression. This protein plays a role in the terminal differentiation of somatotroph and lactotroph cell phenotypes, is involved in the development of the eye, tooth and abdominal organs, and acts as a transcriptional regulator involved in basal and hormone-regulated activity of prolactin. Mutations in this gene are associated with Axenfeld-Rieger syndrome, iridogoniodysgenesis syndrome, and sporadic cases of Peters anomaly. A similar protein in other vertebrates is involved in the determination of left-right asymmetry during development. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Benign. Variant got -7 ACMG points.
BP4
Computational evidence support a benign effect (BayesDel_noAF=-0.34).
BP6
Variant 4-110617785-T-C is Benign according to our data. Variant chr4-110617785-T-C is described in ClinVar as [Conflicting_classifications_of_pathogenicity]. Clinvar id is 347294.We mark this variant Likely_benign, oryginal submissions are: {Uncertain_significance=1, Benign=6}.
BS2
High AC in GnomAd4 at 31 AD gene.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | UniProt |
---|---|---|---|---|---|---|---|
PITX2 | NM_000325.6 | c.*340A>G | 3_prime_UTR_variant | 3/3 | ENST00000644743.1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|
PITX2 | ENST00000644743.1 | c.*340A>G | 3_prime_UTR_variant | 3/3 | NM_000325.6 |
Frequencies
GnomAD3 genomes AF: 0.000204 AC: 31AN: 152242Hom.: 0 Cov.: 33
GnomAD3 genomes
AF:
AC:
31
AN:
152242
Hom.:
Cov.:
33
Gnomad AFR
AF:
Gnomad AMI
AF:
Gnomad AMR
AF:
Gnomad ASJ
AF:
Gnomad EAS
AF:
Gnomad SAS
AF:
Gnomad FIN
AF:
Gnomad MID
AF:
Gnomad NFE
AF:
Gnomad OTH
AF:
GnomAD4 exome AF: 0.000644 AC: 102AN: 158358Hom.: 0 Cov.: 0 AF XY: 0.00104 AC XY: 86AN XY: 82816
GnomAD4 exome
AF:
AC:
102
AN:
158358
Hom.:
Cov.:
0
AF XY:
AC XY:
86
AN XY:
82816
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome AF: 0.000203 AC: 31AN: 152360Hom.: 0 Cov.: 33 AF XY: 0.000282 AC XY: 21AN XY: 74516
GnomAD4 genome
AF:
AC:
31
AN:
152360
Hom.:
Cov.:
33
AF XY:
AC XY:
21
AN XY:
74516
Gnomad4 AFR
AF:
Gnomad4 AMR
AF:
Gnomad4 ASJ
AF:
Gnomad4 EAS
AF:
Gnomad4 SAS
AF:
Gnomad4 FIN
AF:
Gnomad4 NFE
AF:
Gnomad4 OTH
AF:
Bravo
AF:
Asia WGS
AF:
AC:
5
AN:
3478
ClinVar
Significance: Conflicting classifications of pathogenicity
Submissions summary: Uncertain:1Benign:6
Revision: criteria provided, conflicting classifications
LINK: link
Submissions by phenotype
Hypoplasia of the iris Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. - |
PITX2-Related Eye Abnormalities Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Anterior segment dysgenesis 4 Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Cataract Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Ring dermoid of cornea Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Irido-corneo-trabecular dysgenesis Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Axenfeld-Rieger syndrome type 1 Benign:1
Benign, criteria provided, single submitter | clinical testing | Illumina Laboratory Services, Illumina | Jan 13, 2018 | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_noAF
Benign
CADD
Benign
DANN
Benign
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at