NM_001267550.2:c.1066G>C
Variant summary
Our verdict is Likely benign. The variant received -2 ACMG points: 0P and 2B. BP4_Moderate
The NM_001267550.2(TTN):āc.1066G>Cā(p.Glu356Gln) variant causes a missense change. The variant allele was found at a frequency of 0.000136 in 1,613,992 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a benign outcome for this variant. 12/19 in silico tools predict a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. E356K) has been classified as Uncertain significance.
Frequency
Consequence
NM_001267550.2 missense
Scores
Clinical Significance
Conservation
Publications
- dilated cardiomyopathyInheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
- dilated cardiomyopathy 1GInheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), Ambry Genetics, G2P
- early-onset myopathy with fatal cardiomyopathyInheritance: AR Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Labcorp Genetics (formerly Invitae), Orphanet, G2P
- TTN-related myopathyInheritance: AR Classification: DEFINITIVE Submitted by: ClinGen
- myopathy, myofibrillar, 9, with early respiratory failureInheritance: AD Classification: STRONG, MODERATE, SUPPORTIVE Submitted by: Labcorp Genetics (formerly Invitae), Orphanet, ClinGen, Ambry Genetics
- tibial muscular dystrophyInheritance: AD Classification: STRONG, MODERATE, SUPPORTIVE Submitted by: Ambry Genetics, Labcorp Genetics (formerly Invitae), ClinGen, Orphanet
- autosomal recessive limb-girdle muscular dystrophy type 2JInheritance: AR Classification: STRONG, MODERATE, SUPPORTIVE Submitted by: Labcorp Genetics (formerly Invitae), Ambry Genetics, Orphanet
- hypertrophic cardiomyopathy 9Inheritance: AD Classification: MODERATE, LIMITED Submitted by: Labcorp Genetics (formerly Invitae), PanelApp Australia
- familial isolated dilated cardiomyopathyInheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
- autosomal recessive centronuclear myopathyInheritance: AR Classification: SUPPORTIVE Submitted by: Orphanet
- childhood-onset progressive contractures-limb-girdle weakness-muscle dystrophy syndromeInheritance: AR Classification: SUPPORTIVE Submitted by: Orphanet
- arrhythmogenic right ventricular cardiomyopathyInheritance: AD Classification: LIMITED Submitted by: ClinGen
- congenital myopathyInheritance: AD Classification: LIMITED Submitted by: Ambry Genetics
- hereditary skeletal muscle disorderInheritance: AD Classification: LIMITED Submitted by: Ambry Genetics
- hypertrophic cardiomyopathyInheritance: AD Classification: LIMITED Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Likely_benign. The variant received -2 ACMG points.
Transcripts
RefSeq
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
|---|---|---|---|---|---|---|---|---|
| TTN | NM_001267550.2 | c.1066G>C | p.Glu356Gln | missense_variant | Exon 7 of 363 | ENST00000589042.5 | NP_001254479.2 | |
| TTN | NM_133379.5 | c.1066G>C | p.Glu356Gln | missense_variant | Exon 7 of 46 | ENST00000360870.10 | NP_596870.2 |
Ensembl
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
|---|---|---|---|---|---|---|---|---|---|---|
| TTN | ENST00000589042.5 | c.1066G>C | p.Glu356Gln | missense_variant | Exon 7 of 363 | 5 | NM_001267550.2 | ENSP00000467141.1 | ||
| TTN | ENST00000360870.10 | c.1066G>C | p.Glu356Gln | missense_variant | Exon 7 of 46 | 5 | NM_133379.5 | ENSP00000354117.4 |
Frequencies
GnomAD3 genomes AF: 0.000118 AC: 18AN: 152220Hom.: 0 Cov.: 33 show subpopulations
GnomAD2 exomes AF: 0.000155 AC: 39AN: 251140 AF XY: 0.000177 show subpopulations
GnomAD4 exome AF: 0.000138 AC: 201AN: 1461772Hom.: 0 Cov.: 32 AF XY: 0.000133 AC XY: 97AN XY: 727182 show subpopulations
Age Distribution
GnomAD4 genome AF: 0.000118 AC: 18AN: 152220Hom.: 0 Cov.: 33 AF XY: 0.000161 AC XY: 12AN XY: 74356 show subpopulations
Age Distribution
ClinVar
Submissions by phenotype
not provided Uncertain:3Other:1
- -
- -
- -
- -
not specified Uncertain:2Benign:1
The p.Glu356Gln variant in TTN has not been previously reported in individuals w ith cardiomyopathy, but has been identified in 8/66726 European chromosomes and 5/11572 Latino chromosomes by the Exome Aggregation Consortium (ExAC, http://exa c.broadinstitute.org; dbSNP rs144531477). Computational prediction tools and con servation analysis suggest that this variant may impact the protein, though this information is not predictive enough to determine pathogenicity. In summary, th e clinical significance of the p.Glu356Gln variant is uncertain. -
The TTN c.1066G>C; p.Glu356Gln variant (rs144531477; ClinVar Variation ID: 202582) is rare in the general population (<1% allele frequency in the Genome Aggregation Database) and has not been reported in the medical literature in association with dilated cardiomyopathy (DCM) or other TTN-related disease. The clinical relevance of rare missense variants in this gene, which are identified on average once per individual sequenced in affected populations (Herman 2012), is not well understood. Yet, evidence suggests that the vast majority of such missense variants do not contribute to the clinical outcome of DCM (Begay 2015). Thus, the clinical significance of the p.Glu356Gln variant cannot be determined with certainty. References: Begay RL et al. Role of Titin Missense Variants in Dilated Cardiomyopathy. J Am Heart Assoc. 2015 Nov 13;4(11). Herman DS et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012 Feb 16;366(7):619-28. Linke and Hamdani. Gigantic business: titin properties and function through thick and thin. Circ Res 2014; 114(6): 1052-1068. -
- -
Autosomal recessive limb-girdle muscular dystrophy type 2J Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
Autosomal recessive limb-girdle muscular dystrophy type 2J;C1858763:Dilated cardiomyopathy 1G Uncertain:1
- -
Dilated cardiomyopathy 1G Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
Early-onset myopathy with fatal cardiomyopathy Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
Arthrogryposis syndrome Uncertain:1
- -
Cardiovascular phenotype Uncertain:1
The p.E356Q variant (also known as c.1066G>C), located in coding exon 6 of the TTN gene, results from a G to C substitution at nucleotide position 1066. The glutamic acid at codon 356 is replaced by glutamine, an amino acid with highly similar properties. This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be tolerated by in silico analysis. Since supporting evidence is limited at this time, the clinical significance of this alteration remains unclear. -
Tibial muscular dystrophy Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Myopathy, myofibrillar, 9, with early respiratory failure Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as likely benign is not then subjected to further curation. The score for this variant resulted in a classification of likely benign for this disease. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at