chrX-101398501-T-G
Position:
Variant summary
Our verdict is Pathogenic. Variant got 11 ACMG points: 11P and 0B. PM2PP3PP5_Very_Strong
The NM_000169.3(GLA):āc.868A>Cā(p.Met290Leu) variant causes a missense change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.00000249 in 1,206,427 control chromosomes in the GnomAD database, with no homozygous occurrence. There are 1 hemizygotes in GnomAD. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (ā ā ).
Frequency
Genomes: š 0.000018 ( 0 hom., 1 hem., cov: 23)
Exomes š: 9.1e-7 ( 0 hom. 0 hem. )
Consequence
GLA
NM_000169.3 missense
NM_000169.3 missense
Scores
7
4
7
Clinical Significance
Conservation
PhyloP100: 8.02
Genes affected
GLA (HGNC:4296): (galactosidase alpha) This gene encodes a homodimeric glycoprotein that hydrolyses the terminal alpha-galactosyl moieties from glycolipids and glycoproteins. This enzyme predominantly hydrolyzes ceramide trihexoside, and it can catalyze the hydrolysis of melibiose into galactose and glucose. A variety of mutations in this gene affect the synthesis, processing, and stability of this enzyme, which causes Fabry disease, a rare lysosomal storage disorder that results from a failure to catabolize alpha-D-galactosyl glycolipid moieties. [provided by RefSeq, Jul 2008]
RPL36A-HNRNPH2 (HGNC:48349): (RPL36A-HNRNPH2 readthrough) This locus represents naturally occurring read-through transcription between the neighboring ribosomal protein L36a and heterogeneous nuclear ribonucleoprotein H2 (H') genes on chromosome X. The read-through transcript produces a protein with similarity to the protein encoded by the upstream locus, ribosomal protein L36a. Alternatively spliced transcript variants have been identified. [provided by RefSeq, Jan 2011]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 11 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
PP3
MetaRNN computational evidence supports a deleterious effect, 0.753
PP5
Variant X-101398501-T-G is Pathogenic according to our data. Variant chrX-101398501-T-G is described in ClinVar as [Likely_pathogenic]. Clinvar id is 222434.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
GLA | NM_000169.3 | c.868A>C | p.Met290Leu | missense_variant | 6/7 | ENST00000218516.4 | NP_000160.1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
GLA | ENST00000218516.4 | c.868A>C | p.Met290Leu | missense_variant | 6/7 | 1 | NM_000169.3 | ENSP00000218516.4 | ||
RPL36A-HNRNPH2 | ENST00000409170.3 | c.300+3044T>G | intron_variant | 4 | ENSP00000386655.4 |
Frequencies
GnomAD3 genomes AF: 0.0000179 AC: 2AN: 111993Hom.: 0 Cov.: 23 AF XY: 0.0000293 AC XY: 1AN XY: 34141
GnomAD3 genomes
AF:
AC:
2
AN:
111993
Hom.:
Cov.:
23
AF XY:
AC XY:
1
AN XY:
34141
Gnomad AFR
AF:
Gnomad AMI
AF:
Gnomad AMR
AF:
Gnomad ASJ
AF:
Gnomad EAS
AF:
Gnomad SAS
AF:
Gnomad FIN
AF:
Gnomad MID
AF:
Gnomad NFE
AF:
Gnomad OTH
AF:
GnomAD3 exomes AF: 0.0000109 AC: 2AN: 183454Hom.: 0 AF XY: 0.00 AC XY: 0AN XY: 67890
GnomAD3 exomes
AF:
AC:
2
AN:
183454
Hom.:
AF XY:
AC XY:
0
AN XY:
67890
Gnomad AFR exome
AF:
Gnomad AMR exome
AF:
Gnomad ASJ exome
AF:
Gnomad EAS exome
AF:
Gnomad SAS exome
AF:
Gnomad FIN exome
AF:
Gnomad NFE exome
AF:
Gnomad OTH exome
AF:
GnomAD4 exome AF: 9.14e-7 AC: 1AN: 1094434Hom.: 0 Cov.: 30 AF XY: 0.00 AC XY: 0AN XY: 359890
GnomAD4 exome
AF:
AC:
1
AN:
1094434
Hom.:
Cov.:
30
AF XY:
AC XY:
0
AN XY:
359890
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome AF: 0.0000179 AC: 2AN: 111993Hom.: 0 Cov.: 23 AF XY: 0.0000293 AC XY: 1AN XY: 34141
GnomAD4 genome
AF:
AC:
2
AN:
111993
Hom.:
Cov.:
23
AF XY:
AC XY:
1
AN XY:
34141
Gnomad4 AFR
AF:
Gnomad4 AMR
AF:
Gnomad4 ASJ
AF:
Gnomad4 EAS
AF:
Gnomad4 SAS
AF:
Gnomad4 FIN
AF:
Gnomad4 NFE
AF:
Gnomad4 OTH
AF:
Bravo
AF:
ESP6500AA
AF:
AC:
0
ESP6500EA
AF:
AC:
1
ExAC
AF:
AC:
1
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:8Uncertain:2
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Fabry disease Pathogenic:6
Likely pathogenic, criteria provided, single submitter | clinical testing | Women's Health and Genetics/Laboratory Corporation of America, LabCorp | Nov 26, 2022 | Variant summary: GLA c.868A>C (p.Met290Leu) results in a conservative amino acid change in the encoded protein sequence. Three of five in-silico tools predict a damaging effect of the variant on protein function. The variant allele was found at a frequency of 1.1e-05 in 183454 control chromosomes (gnomAD). c.868A>C has been reported in the literature in individuals affected with Fabry Disease (e.g. Ferri_2012, Zampetti_2013). These data indicate that the variant is likely to be associated with disease. When expressed in a heterologous HEK293 cell assay, the variant had 11.2% normal activitiy (Ferri_2012). Six ClinVar submitters have assessed the variant since 2014: four classified the variant as uncertain significance and two as likely pathogenic. Based on the evidence outlined above, the variant was classified as likely pathogenic. - |
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Jan 09, 2024 | This sequence change replaces methionine, which is neutral and non-polar, with leucine, which is neutral and non-polar, at codon 290 of the GLA protein (p.Met290Leu). This variant is present in population databases (rs375538532, gnomAD 0.002%). This missense change has been observed in individual(s) with Fabry disease (PMID: 21517827). ClinVar contains an entry for this variant (Variation ID: 222434). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt GLA protein function with a negative predictive value of 80%. Experimental studies have shown that this missense change affects GLA function (PMID: 21517827, 23935525). This variant disrupts the p.Met290 amino acid residue in GLA. Other variant(s) that disrupt this residue have been determined to be pathogenic (PMID: 23935525, 27773586, 28728877, 29307789). This suggests that this residue is clinically significant, and that variants that disrupt this residue are likely to be disease-causing. For these reasons, this variant has been classified as Pathogenic. - |
Likely pathogenic, criteria provided, single submitter | curation | Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard | Jan 22, 2020 | The p.Met290Leu variant in GLA has been reported in eight individuals with Fabry disease, has segregated with disease in 7 affected relatives from 2 families (PMID: 23210910, 28069318), and has been identified in 0.0024% (2/81914) of European (non-Finnish) chromosomes by the Genome Aggregation Database (gnomAD, http://gnomad.broadinstitute.org; dbSNP rs375538532). Although this variant has been seen in the general population, its frequency is low enough to be consistent with Fabry disease. Please note that for diseases with clinical variability, or reduced penetrance, pathogenic variants may be present at a low frequency in the general population. This variant has also been reported in ClinVar as a VUS by Invitae (Variation ID:222434). Computational prediction tools and conservation analyses suggest that this variant may impact the protein, though this information is not predictive enough to determine pathogenicity. The phenotype of an individual hemizygous for this variant is highly specific for Fabry disease based on the classic phenotype that is consistent with disease (PMID: 21517827). One additional likely pathogenic variant, causing a different amino acid change at the same position, p.Met290Ile, has been reported in association with disease in the literature, slightly supporting that a change at this position may not be tolerated (PMID: 28302345, 23935525, 22773828, 27560961, 16595074). In summary, although additional studies are required to fully establish its clinical significance, this variant is likely pathogenic. ACMG/AMP Criteria applied: PP3, PM2_supporting, PP4, PS4_supporting, PP1_moderate, PM5_supporting (Richards 2015). - |
Likely pathogenic, criteria provided, single submitter | clinical testing | Genome-Nilou Lab | Jul 15, 2021 | - - |
Likely pathogenic, criteria provided, single submitter | clinical testing | All of Us Research Program, National Institutes of Health | Aug 15, 2023 | This missense variant replaces methionine with leucine at codon 290 of the GLA protein. Computational prediction suggests that this variant may have a deleterious impact on protein structure and function (internally defined REVEL score threshold >= 0.7, PMID: 27666373). Experimental functional studies have shown that baseline alpha-galactosidase A activity of the mutant protein was ~60-70% of wild type upon heterologous expression in HEK-293 cells (PMID: 21517827, 32198894). This variant has been reported in individuals affected with Fabry disease (PMID: 21517827, 23210910, 23332617, 28069318, 30477121). Different variants affecting the same codon, c.870G>A p.Met290Ile and c.870G>C p.Met290Ile, are considered to be disease-causing (Clinvar variation ID: 222435 and 222436), suggesting that methionine at this position is important for GLA protein function. This variant has been identified in 2/183454 chromosomes in the general population by the Genome Aggregation Database (gnomAD). Based on the available evidence, this variant is classified as Likely Pathogenic. - |
Likely pathogenic, criteria provided, single submitter | clinical testing | Color Diagnostics, LLC DBA Color Health | Aug 03, 2023 | This missense variant replaces methionine with leucine at codon 290 of the GLA protein. Computational prediction suggests that this variant may have a deleterious impact on protein structure and function (internally defined REVEL score threshold >= 0.7, PMID: 27666373). Experimental functional studies have shown that baseline alpha-galactosidase A activity of the mutant protein was ~60-70% of wild type upon heterologous expression in HEK-293 cells (PMID: 21517827, 32198894). This variant has been reported in individuals affected with Fabry disease (PMID: 21517827, 23210910, 23332617, 28069318, 30477121). Different variants affecting the same codon, c.870G>A p.Met290Ile and c.870G>C p.Met290Ile, are considered to be disease-causing (Clinvar variation ID: 222435 and 222436), suggesting that methionine at this position is important for GLA protein function. This variant has been identified in 2/183454 chromosomes in the general population by the Genome Aggregation Database (gnomAD). Based on the available evidence, this variant is classified as Likely Pathogenic. - |
not provided Pathogenic:1Uncertain:2
Uncertain significance, flagged submission | clinical testing | Revvity Omics, Revvity | Jan 06, 2020 | - - |
Uncertain significance, flagged submission | provider interpretation | Stanford Center for Inherited Cardiovascular Disease, Stanford University | Jun 26, 2017 | Seen in 1 patient in our center with dilated cardiomyopathy. Testing was performed at Invitae. Given the weak case data and different phenotype than would be expected for a disease-causing variant in these gene, we consider this variant a variant of uncertain significance and we do not feel it is suitable for assessing risk in healthy relatives ("predictive genetic testing"). The GLA gene encodes alphagalacotosidase. Mutations in the GLA cause Fabry disease, an X-linked condition characterized by multi-organ dysfunction. Clinical characteristics include left ventricular hypertrophy, kidney failure, peripheral neuropathy, ophthalmologic and sweating abnormalities. The variant has been seen in at least 1 unrelated case of Fabry disease. It has not been reported in any cases of dilated cardiomyopathy. There is weak case data and some functional data. Ferri et al 2011 reported the variant in a patient with clinical findings suggestive of Fabry disease. She was a 34yo, who had "cardiovascular manifestations, psychiatric symptoms, and cardiomyopathy (type not specified). Her alpha-gal A enzyme level was 11nmol/mg/h. The paper noted that the HEK cells harboring the Met290Leu variant had decreased enzyme levels that were recovered with treatment with the pharmacologic chaperone deoxygalactonojirimycin (DGJ). Lukas et al (2013) found that variant resulted in a 18% wild type alpha-gal A level on in vitro assay. The Met at codon 290 is conserved across species. PolyPhen predicts it to be probably damaging. The variant is present in 2 of 89,369 individuals listed in the Genome Aggregation Consortium Dataset (gnomAD; http://gnomad.broadinstitute.org/), which currently includes variant calls on >140,00 unrelated individuals of African, Asian, European, Latino, and Ashkenazi descent. Specifically the variant has been seen in 2 of 40,064 individuals of European descent (MAF = 0.002%). - |
Likely pathogenic, criteria provided, single submitter | clinical testing | GeneDx | Sep 17, 2024 | In silico analysis indicates that this missense variant does not alter protein structure/function; Not observed at significant frequency in large population cohorts (gnomAD); This variant is associated with the following publications: (PMID: 22004918, 21517827, 25382311, 28069318, 27657681, 37599028, 37441486, 23935525, 23210910) - |
Cardiovascular phenotype Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Apr 29, 2024 | The c.868A>C (p.M290L) alteration is located in coding exon 6 of the GLA gene. This alteration results from an A to C substitution at nucleotide position 868, causing the methionine (M) at amino acid position 290 to be replaced by a leucine (L). Based on data from gnomAD, the C allele has an overall frequency of 0.001% (2/183454) total alleles studied. The highest observed frequency was 0.002% (2/81914) of European (non-Finnish) alleles. This alteration has been detected in individuals reported to have Fabry disease (FD) or features consistent with FD, demonstrating reduced alpha-galactosidase enzyme activity (Ferri, 2012; Zampetti, 2013; Graziani, 2017; Burlina, 2019; Gragnaniello, 2021). This amino acid position is highly conserved in available vertebrate species. In in vitro functional studies, this variant was shown to result in reduced enzyme activity (Ferri, 2012; Lukas, 2013). This alteration is predicted to be deleterious by in silico analysis. Based on the available evidence, this alteration is classified as likely pathogenic. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Benign
CardioboostCm
Pathogenic
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Benign
DANN
Benign
DEOGEN2
Uncertain
D;.
FATHMM_MKL
Uncertain
D
LIST_S2
Uncertain
D;T
M_CAP
Pathogenic
D
MetaRNN
Pathogenic
D;D
MetaSVM
Pathogenic
D
MutationAssessor
Benign
L;.
PrimateAI
Uncertain
T
PROVEAN
Benign
N;.
REVEL
Pathogenic
Sift
Benign
T;.
Sift4G
Benign
T;.
Polyphen
D;.
Vest4
MutPred
Loss of catalytic residue at M290 (P = 0.0189);.;
MVP
MPC
ClinPred
T
GERP RS
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at