rs1057520764
Positions:
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_004006.3(DMD):c.5758C>T(p.Gln1920Ter) variant causes a stop gained change. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 23)
Consequence
DMD
NM_004006.3 stop_gained
NM_004006.3 stop_gained
Scores
2
2
1
Clinical Significance
Conservation
PhyloP100: 5.97
Genes affected
DMD (HGNC:2928): (dystrophin) This gene spans a genomic range of greater than 2 Mb and encodes a large protein containing an N-terminal actin-binding domain and multiple spectrin repeats. The encoded protein forms a component of the dystrophin-glycoprotein complex (DGC), which bridges the inner cytoskeleton and the extracellular matrix. Deletions, duplications, and point mutations at this gene locus may cause Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), or cardiomyopathy. Alternative promoter usage and alternative splicing result in numerous distinct transcript variants and protein isoforms for this gene. [provided by RefSeq, Dec 2016]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant X-32342264-G-A is Pathogenic according to our data. Variant chrX-32342264-G-A is described in ClinVar as [Pathogenic]. Clinvar id is 379872.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars. Variant chrX-32342264-G-A is described in Lovd as [Pathogenic].
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
DMD | NM_004006.3 | c.5758C>T | p.Gln1920Ter | stop_gained | 41/79 | ENST00000357033.9 | NP_003997.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
DMD | ENST00000357033.9 | c.5758C>T | p.Gln1920Ter | stop_gained | 41/79 | 1 | NM_004006.3 | ENSP00000354923 | P4 |
Frequencies
GnomAD3 genomes Cov.: 23
GnomAD3 genomes
Cov.:
23
GnomAD4 exome Cov.: 31
GnomAD4 exome
Cov.:
31
GnomAD4 genome Cov.: 23
GnomAD4 genome
Cov.:
23
ClinVar
Significance: Pathogenic
Submissions summary: Pathogenic:4
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
not provided Pathogenic:2
Pathogenic, criteria provided, single submitter | clinical testing | ARUP Laboratories, Molecular Genetics and Genomics, ARUP Laboratories | Jul 30, 2020 | The DMD c.5758C>T; p.Gln1920Ter variant (rs1057520764) is reported in the literature in several individuals affected with Duchenne muscular dystrophy (Flanigan 2009, Okuba 2017). This variant is absent from general population databases (Exome Variant Server, Genome Aggregation Database), indicating it is not a common polymorphism. This variant induces an early termination codon and is predicted to result in a truncated protein or mRNA subject to nonsense-mediated decay. Based on available information, this variant is considered to be pathogenic. References: Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009;30(12):1657-1666. Okubo M et al. Comprehensive analysis for genetic diagnosis of Dystrophinopathies in Japan. Orphanet J Rare Dis. 2017;12(1):149. - |
Pathogenic, criteria provided, single submitter | clinical testing | GeneDx | Dec 05, 2023 | Nonsense variant predicted to result in protein truncation or nonsense mediated decay in a gene for which loss of function is a known mechanism of disease; Not observed at significant frequency in large population cohorts (gnomAD); Based on the understanding of this genetic alteration, it may be amenable to nonsense read-through therapy that is currently available or in clinical trial; This variant is associated with the following publications: (PMID: 31919629, 28859693, 19937601) - |
Cardiovascular phenotype Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Apr 17, 2017 | The p.Q1920* pathogenic mutation (also known as c.5758C>T), located in coding exon 41 of the DMD gene, results from a C to T substitution at nucleotide position 5758. This changes the amino acid from a glutamine to a stop codon within coding exon 41. This alteration has been detected in two affected males and a carrier female from a Duchenne Muscular Dystrophy cohort (Flanigan KM et al. Hum Mutat. 2009;30:1657-66). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. - |
Duchenne muscular dystrophy Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Sep 23, 2022 | For these reasons, this variant has been classified as Pathogenic. ClinVar contains an entry for this variant (Variation ID: 379872). This premature translational stop signal has been observed in individuals with Duchenne muscular dystrophy (PMID: 19937601, 31919629). This variant is not present in population databases (gnomAD no frequency). This sequence change creates a premature translational stop signal (p.Gln1920*) in the DMD gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in DMD are known to be pathogenic (PMID: 16770791, 25007885). - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
FATHMM_MKL
Uncertain
D
MutationTaster
Benign
A;A
Vest4
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at