Menu
GeneBe

rs1060500603

Variant summary

Our verdict is Likely pathogenic. Variant got 8 ACMG points: 8P and 0B. PVS1_StrongPM2PP5_Moderate

The NM_172107.4(KCNQ2):c.2179_2180insCGCCAGG(p.Gly727AlafsTer140) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. Variant has been reported in ClinVar as Likely pathogenic (★). Synonymous variant affecting the same amino acid position (i.e. G727G) has been classified as Likely benign.

Frequency

Genomes: not found (cov: 33)

Consequence

KCNQ2
NM_172107.4 frameshift

Scores

Not classified

Clinical Significance

Likely pathogenic criteria provided, single submitter P:1

Conservation

PhyloP100: 0.492
Variant links:
Genes affected
KCNQ2 (HGNC:6296): (potassium voltage-gated channel subfamily Q member 2) The M channel is a slowly activating and deactivating potassium channel that plays a critical role in the regulation of neuronal excitability. The M channel is formed by the association of the protein encoded by this gene and a related protein encoded by the KCNQ3 gene, both integral membrane proteins. M channel currents are inhibited by M1 muscarinic acetylcholine receptors and activated by retigabine, a novel anti-convulsant drug. Defects in this gene are a cause of benign familial neonatal convulsions type 1 (BFNC), also known as epilepsy, benign neonatal type 1 (EBN1). At least five transcript variants encoding five different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Likely_pathogenic. Variant got 8 ACMG points.

PVS1
Loss of function variant, product does not undergo nonsense mediated mRNA decay. Variant is located in the 3'-most exon, not predicted to undergo nonsense mediated mRNA decay. There are 14 pathogenic variants in the truncated region.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 20-63407083-C-CCCTGGCG is Pathogenic according to our data. Variant chr20-63407083-C-CCCTGGCG is described in ClinVar as [Likely_pathogenic]. Clinvar id is 405212.Status of the report is criteria_provided_single_submitter, 1 stars.

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect #exon/exons MANE UniProt
KCNQ2NM_172107.4 linkuse as main transcriptc.2179_2180insCGCCAGG p.Gly727AlafsTer140 frameshift_variant 17/17 ENST00000359125.7

Ensembl

Gene Transcript HGVSc HGVSp Effect #exon/exons TSL MANE Appris UniProt
KCNQ2ENST00000359125.7 linkuse as main transcriptc.2179_2180insCGCCAGG p.Gly727AlafsTer140 frameshift_variant 17/171 NM_172107.4 A1O43526-1

Frequencies

GnomAD3 genomes
Cov.:
33
GnomAD4 exome
Cov.:
36
GnomAD4 genome
Cov.:
33

ClinVar

Significance: Likely pathogenic
Submissions summary: Pathogenic:1
Revision: criteria provided, single submitter
LINK: link

Submissions by phenotype

Early infantile epileptic encephalopathy with suppression bursts Pathogenic:1
Likely pathogenic, criteria provided, single submitterclinical testingInvitaeJan 12, 2017In summary, this is a novel frameshift variant that occurs upstream of a previously described pathogenic frameshift variant. This evidence indicates that the variant is also pathogenic, but additional data is needed to prove that conclusively. Therefore, this variant has been classified as Likely Pathogenic. A different frameshift downstream of this variant (p.Cys744Leufs*91) has been determined to be pathogenic (PMID: 23692823). This suggests that disruption of this region of the KCNQ2 protein is causative of disease. This variant is not present in population databases (ExAC no frequency) and has not been reported in the literature in individuals with a KCNQ2-related disease. This sequence change inserts 7 nucleotides in exon 17 of the KCNQ2 mRNA (c.2173_2179dupCGCCAGG), causing a frameshift at codon 727. This creates a premature translational stop signal in the last exon of the KCNQ2 mRNA (p.Gly727Alafs*140). While this is not anticipated to result in nonsense mediated decay, it is expected to disrupt the last 145 amino acids of the KCNQ2 protein. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction

Splicing

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs1060500603; hg19: chr20-62038436; API