rs116128702
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The ENST00000265104.5(DNAH5):c.349G>T(p.Glu117Ter) variant causes a stop gained change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 32)
Consequence
DNAH5
ENST00000265104.5 stop_gained
ENST00000265104.5 stop_gained
Scores
5
1
1
Clinical Significance
Conservation
PhyloP100: 7.26
Genes affected
DNAH5 (HGNC:2950): (dynein axonemal heavy chain 5) This gene encodes a dynein protein, which is part of a microtubule-associated motor protein complex consisting of heavy, light, and intermediate chains. This protein is an axonemal heavy chain dynein. It functions as a force-generating protein with ATPase activity, whereby the release of ADP is thought to produce the force-producing power stroke. Mutations in this gene cause primary ciliary dyskinesia type 3, as well as Kartagener syndrome, which are both diseases due to ciliary defects. [provided by RefSeq, Oct 2009]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 5-13923369-C-A is Pathogenic according to our data. Variant chr5-13923369-C-A is described in ClinVar as [Pathogenic]. Clinvar id is 454767.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
DNAH5 | NM_001369.3 | c.349G>T | p.Glu117Ter | stop_gained | 4/79 | ENST00000265104.5 | NP_001360.1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
DNAH5 | ENST00000265104.5 | c.349G>T | p.Glu117Ter | stop_gained | 4/79 | 1 | NM_001369.3 | ENSP00000265104 | P4 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 31
GnomAD4 exome
Cov.:
31
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
Bravo
AF:
ClinVar
Significance: Pathogenic
Submissions summary: Pathogenic:2
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Primary ciliary dyskinesia Pathogenic:2
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Sep 09, 2022 | For these reasons, this variant has been classified as Pathogenic. Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site. ClinVar contains an entry for this variant (Variation ID: 454767). This premature translational stop signal has been observed in individual(s) with primary ciliary dyskinesia (Invitae). This variant is not present in population databases (gnomAD no frequency). This sequence change creates a premature translational stop signal (p.Glu117*) in the DNAH5 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in DNAH5 are known to be pathogenic (PMID: 11788826, 16627867). - |
Pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Sep 12, 2016 | The p.E117* pathogenic mutation (also known as c.349G>T), located in coding exon 4 of the DNAH5 gene, results from a G to T substitution at nucleotide position 349. This changes the amino acid from a glutamic acid to a stop codon within coding exon 4. This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Pathogenic
D
MutationTaster
Benign
A
Vest4
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
DS_AG_spliceai
Position offset: -47
Find out detailed SpliceAI scores and Pangolin per-transcript scores at