rs1553532356
Positions:
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_001267550.2(TTN):c.92797C>T(p.Gln30933Ter) variant causes a stop gained change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 33)
Consequence
TTN
NM_001267550.2 stop_gained
NM_001267550.2 stop_gained
Scores
5
2
Clinical Significance
Conservation
PhyloP100: 8.11
Genes affected
TTN (HGNC:12403): (titin) This gene encodes a large abundant protein of striated muscle. The product of this gene is divided into two regions, a N-terminal I-band and a C-terminal A-band. The I-band, which is the elastic part of the molecule, contains two regions of tandem immunoglobulin domains on either side of a PEVK region that is rich in proline, glutamate, valine and lysine. The A-band, which is thought to act as a protein-ruler, contains a mixture of immunoglobulin and fibronectin repeats, and possesses kinase activity. An N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle associated proteins so it serves as an adhesion template for the assembly of contractile machinery in muscle cells. It has also been identified as a structural protein for chromosomes. Alternative splicing of this gene results in multiple transcript variants. Considerable variability exists in the I-band, the M-line and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Mutations in this gene are associated with familial hypertrophic cardiomyopathy 9, and autoantibodies to titin are produced in patients with the autoimmune disease scleroderma. [provided by RefSeq, Feb 2012]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 2-178548829-G-A is Pathogenic according to our data. Variant chr2-178548829-G-A is described in ClinVar as [Likely_pathogenic]. Clinvar id is 534962.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
TTN | NM_001267550.2 | c.92797C>T | p.Gln30933Ter | stop_gained | 339/363 | ENST00000589042.5 | NP_001254479.2 | |
TTN-AS1 | NR_038272.1 | n.2043+6468G>A | intron_variant, non_coding_transcript_variant |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
TTN | ENST00000589042.5 | c.92797C>T | p.Gln30933Ter | stop_gained | 339/363 | 5 | NM_001267550.2 | ENSP00000467141 | P1 | |
TTN-AS1 | ENST00000659121.1 | n.416+25193G>A | intron_variant, non_coding_transcript_variant |
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD3 genomes
Cov.:
33
GnomAD4 exome Cov.: 34
GnomAD4 exome
Cov.:
34
GnomAD4 genome Cov.: 33
GnomAD4 genome
Cov.:
33
ClinVar
Significance: Likely pathogenic
Submissions summary: Pathogenic:2
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Autosomal recessive limb-girdle muscular dystrophy type 2J;C1858763:Dilated cardiomyopathy 1G Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Dec 04, 2023 | This sequence change creates a premature translational stop signal (p.Gln30933*) in the TTN gene. While this is not anticipated to result in nonsense mediated decay, it is expected to create a truncated TTN protein. This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with TTN-related conditions. ClinVar contains an entry for this variant (Variation ID: 534962). This variant is located in the A band of TTN (PMID: 25589632). Truncating variants in this region are significantly overrepresented in patients affected with dilated cardiomyopathy (PMID: 25589632). Truncating variants in this region have also been reported in individuals affected with autosomal recessive centronuclear myopathy (PMID: 23975875). In summary, the currently available evidence indicates that the variant is pathogenic, but additional data are needed to prove that conclusively. Therefore, this variant has been classified as Likely Pathogenic. - |
Cardiovascular phenotype Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | Jul 19, 2022 | The p.Q21868* variant (also known as c.65602C>T), located in coding exon 166 of the TTN gene, results from a C to T substitution at nucleotide position 65602. This changes the amino acid from a glutamine to a stop codon within coding exon 166. This exon is located in the A-band region of the N2-B isoform of the titin protein and is constitutively expressed in TTN transcripts (percent spliced in or PSI 100%). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. While truncating variants in TTN are present in 1-3% of the general population, truncating variants in the A-band are the most common cause of dilated cardiomyopathy (DCM) (Herman DS et al. N. Engl. J. Med., 2012 Feb;366:619-28; Roberts AM et al. Sci Transl Med, 2015 Jan;7:270ra6). TTN truncating variants encoded in constitutive exons (PSI >90%) have been found to be significantly associated with DCM regardless of their position in titin (Schafer S et al. Nat. Genet., 2017 01;49:46-53). Based on the majority of available evidence to date, this variant is likely to be pathogenic. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Benign
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Pathogenic
D
MutationTaster
Benign
A;A;A;A;A;A
Vest4
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at