rs1554424091
Variant summary
Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000238.4(KCNH2):c.3090_3093dupGGGT(p.Arg1032GlyfsTer88) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. Variant has been reported in ClinVar as Likely pathogenic (★★). Synonymous variant affecting the same amino acid position (i.e. G1031G) has been classified as Likely benign. Variant results in nonsense mediated mRNA decay.
Frequency
Consequence
NM_000238.4 frameshift
Scores
Clinical Significance
Conservation
Publications
- long QT syndromeInheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
- long QT syndrome 2Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), Ambry Genetics, G2P
- short QT syndromeInheritance: AD Classification: DEFINITIVE, SUPPORTIVE Submitted by: Orphanet, ClinGen
- short QT syndrome type 1Inheritance: AD Classification: DEFINITIVE, STRONG, MODERATE Submitted by: Labcorp Genetics (formerly Invitae), G2P, Ambry Genetics
- Brugada syndromeInheritance: AD Classification: MODERATE, NO_KNOWN Submitted by: ClinGen, Genomics England PanelApp
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 18 ACMG points.
Transcripts
RefSeq
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
|---|---|---|---|---|---|---|---|---|
| KCNH2 | NM_000238.4 | c.3090_3093dupGGGT | p.Arg1032GlyfsTer88 | frameshift_variant | Exon 13 of 15 | ENST00000262186.10 | NP_000229.1 |
Ensembl
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD4 exome Cov.: 36
GnomAD4 genome Cov.: 33
ClinVar
Submissions by phenotype
not provided Pathogenic:1
Reported in a patient referred for Long QT syndrome genetic testing (Kapplinger et al., 2009); Not observed at significant frequency in large population cohorts (gnomAD); Frameshift variant predicted to result in protein truncation, as the last 128 amino acids are replaced with 87 different amino acids, and other loss-of-function variants have been reported downstream in HGMD; This variant is associated with the following publications: (PMID: 19716085) -
Long QT syndrome Pathogenic:1
This variant has been observed in individual(s) with clinical features of long QT syndrome (PMID: 19716085). ClinVar contains an entry for this variant (Variation ID: 519348). This variant is also described as 3093dupGGGT (G1031fs+87X*) in the literature. This variant disrupts the C-terminus of the KCNH2 protein. Other variant(s) that disrupt this region (p.Pro1086Alafs*33) have been determined to be pathogenic (Invitae). This suggests that variants that disrupt this region of the protein are likely to be causative of disease. For these reasons, this variant has been classified as Pathogenic. The frequency data for this variant in the population databases is considered unreliable, as metrics indicate insufficient coverage at this position in the ExAC database. This sequence change creates a premature translational stop signal (p.Arg1032Glyfs*88) in the KCNH2 gene. While this is not anticipated to result in nonsense mediated decay, it is expected to disrupt the last 128 amino acid(s) of the KCNH2 protein. -
Cardiovascular phenotype Pathogenic:1
The c.3090_3093dupGGGT pathogenic mutation, located in coding exon 13 of the KCNH2 gene, results from a duplication of GGGT at nucleotide position 3090, causing a translational frameshift with a predicted alternate stop codon (p.R1032Gfs*88). In a study of long QT syndrome clinical genetic testing, this alteration was reported in one patient, though clinical details were limited (Kapplinger JD et al. Heart Rhythm. 2009;6:1297-303). In addition, similar C-terminal frameshift alterations have been reported in association with long QT syndrome (LQTS) in the literature, and functional studies have indicated that several of those alterations result in truncated proteins with deficient function (e.g., Sasano T et al. J. Mol. Cell. Cardiol. 2004;37:1205-11; Mihic A et al. PLoS ONE. 2011;6:e18273). This alteration is therefore expected to result in loss of function by premature protein truncation. As such, this alteration is interpreted as a disease-causing mutation. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at