rs1554567872
Positions:
Variant summary
Our verdict is Uncertain significance. Variant got 4 ACMG points: 4P and 0B. PM2PP3_Moderate
The NM_002485.5(NBN):c.454A>G(p.Met152Val) variant causes a missense change. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★★).
Frequency
Genomes: not found (cov: 32)
Consequence
NBN
NM_002485.5 missense
NM_002485.5 missense
Scores
7
8
4
Clinical Significance
Conservation
PhyloP100: 6.08
Genes affected
NBN (HGNC:7652): (nibrin) Mutations in this gene are associated with Nijmegen breakage syndrome, an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. The encoded protein is a member of the MRE11/RAD50 double-strand break repair complex which consists of 5 proteins. This gene product is thought to be involved in DNA double-strand break repair and DNA damage-induced checkpoint activation. [provided by RefSeq, Jul 2008]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Uncertain_significance. Variant got 4 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
PP3
MetaRNN computational evidence supports a deleterious effect, 0.904
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
NBN | NM_002485.5 | c.454A>G | p.Met152Val | missense_variant | 4/16 | ENST00000265433.8 | NP_002476.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
NBN | ENST00000265433.8 | c.454A>G | p.Met152Val | missense_variant | 4/16 | 1 | NM_002485.5 | ENSP00000265433.4 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 31
GnomAD4 exome
Cov.:
31
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Uncertain significance
Submissions summary: Uncertain:3
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Microcephaly, normal intelligence and immunodeficiency Uncertain:2
Uncertain significance, criteria provided, single submitter | clinical testing | Genome-Nilou Lab | Nov 07, 2021 | - - |
Uncertain significance, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Aug 09, 2022 | This sequence change replaces methionine, which is neutral and non-polar, with valine, which is neutral and non-polar, at codon 152 of the NBN protein (p.Met152Val). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with NBN-related conditions. ClinVar contains an entry for this variant (Variation ID: 483993). Algorithms developed to predict the effect of missense changes on protein structure and function are either unavailable or do not agree on the potential impact of this missense change (SIFT: "Deleterious"; PolyPhen-2: "Possibly Damaging"; Align-GVGD: "Class C0"). Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. - |
Hereditary cancer-predisposing syndrome Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Ambry Genetics | May 18, 2017 | The p.M152V variant (also known as c.454A>G), located in coding exon 4 of the NBN gene, results from an A to G substitution at nucleotide position 454. The methionine at codon 152 is replaced by valine, an amino acid with highly similar properties. This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Since supporting evidence is limited at this time, the clinical significance of this alteration remains unclear. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Uncertain
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Uncertain
DANN
Uncertain
DEOGEN2
Benign
T;T;.;.
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Uncertain
D
LIST_S2
Benign
T;T;T;T
M_CAP
Uncertain
D
MetaRNN
Pathogenic
D;D;D;D
MetaSVM
Uncertain
D
MutationAssessor
Benign
L;.;.;.
PrimateAI
Uncertain
T
PROVEAN
Uncertain
D;D;D;D
REVEL
Uncertain
Sift
Pathogenic
D;D;T;T
Sift4G
Pathogenic
D;D;.;D
Polyphen
D;.;.;.
Vest4
MutPred
Gain of sheet (P = 0.0827);.;.;.;
MVP
MPC
ClinPred
D
GERP RS
RBP_binding_hub_radar
RBP_regulation_power_radar
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at