rs1555119797
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000051.4(ATM):c.6843C>A(p.Tyr2281Ter) variant causes a stop gained change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 32)
Consequence
ATM
NM_000051.4 stop_gained
NM_000051.4 stop_gained
Scores
2
3
2
Clinical Significance
Conservation
PhyloP100: 0.456
Genes affected
ATM (HGNC:795): (ATM serine/threonine kinase) The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. [provided by RefSeq, Aug 2010]
C11orf65 (HGNC:28519): (chromosome 11 open reading frame 65) Predicted to be involved in negative regulation of mitochondrial fission and negative regulation of protein targeting to mitochondrion. Predicted to be located in cytosol and mitochondrial outer membrane. [provided by Alliance of Genome Resources, Apr 2022]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 11-108326093-C-A is Pathogenic according to our data. Variant chr11-108326093-C-A is described in ClinVar as [Likely_pathogenic]. Clinvar id is 2568209.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
ATM | NM_000051.4 | c.6843C>A | p.Tyr2281Ter | stop_gained | 47/63 | ENST00000675843.1 | NP_000042.3 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
ATM | ENST00000675843.1 | c.6843C>A | p.Tyr2281Ter | stop_gained | 47/63 | NM_000051.4 | ENSP00000501606 | P1 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 32
GnomAD4 exome
Cov.:
32
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:3
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Familial cancer of breast Pathogenic:2
Pathogenic, criteria provided, single submitter | clinical testing | Myriad Genetics, Inc. | Nov 07, 2023 | This variant is considered pathogenic. This variant creates a termination codon and is predicted to result in premature protein truncation. - |
Likely pathogenic, criteria provided, single submitter | clinical testing | Baylor Genetics | Dec 26, 2022 | - - |
Hereditary cancer-predisposing syndrome Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | May 12, 2023 | The p.Y2281* pathogenic mutation (also known as c.6843C>A), located in coding exon 46 of the ATM gene, results from a C to A substitution at nucleotide position 6843. This changes the amino acid from a tyrosine to a stop codon within coding exon 46. This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
Eigen
Uncertain
Eigen_PC
Benign
FATHMM_MKL
Uncertain
D
MutationTaster
Benign
D;A;A
Vest4
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at
Publications
No publications associated with this variant yet.