rs1555153854
Positions:
Variant summary
Our verdict is Pathogenic. Variant got 12 ACMG points: 12P and 0B. PVS1PM2PP5_Moderate
The NM_000020.3(ACVRL1):c.1377+2T>G variant causes a splice donor, intron change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. 3/3 splice prediction tools predicting alterations to normal splicing. Variant has been reported in ClinVar as Pathogenic (★).
Frequency
Genomes: not found (cov: 32)
Consequence
ACVRL1
NM_000020.3 splice_donor, intron
NM_000020.3 splice_donor, intron
Scores
5
1
1
Splicing: ADA: 1.000
2
Clinical Significance
Conservation
PhyloP100: 8.00
Genes affected
ACVRL1 (HGNC:175): (activin A receptor like type 1) This gene encodes a type I cell-surface receptor for the TGF-beta superfamily of ligands. It shares with other type I receptors a high degree of similarity in serine-threonine kinase subdomains, a glycine- and serine-rich region (called the GS domain) preceding the kinase domain, and a short C-terminal tail. The encoded protein, sometimes termed ALK1, shares similar domain structures with other closely related ALK or activin receptor-like kinase proteins that form a subfamily of receptor serine/threonine kinases. Mutations in this gene are associated with hemorrhagic telangiectasia type 2, also known as Rendu-Osler-Weber syndrome 2. [provided by RefSeq, Jul 2008]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 12 ACMG points.
PVS1
Splicing +-2 bp (donor or acceptor) variant, LoF is a know mechanism of disease, No cryptic splice site detected. Exon removal results in frameshift change.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 12-51919117-T-G is Pathogenic according to our data. Variant chr12-51919117-T-G is described in ClinVar as [Pathogenic]. Clinvar id is 533354.Status of the report is criteria_provided_single_submitter, 1 stars.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
ACVRL1 | NM_000020.3 | c.1377+2T>G | splice_donor_variant, intron_variant | ENST00000388922.9 | NP_000011.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
ACVRL1 | ENST00000388922.9 | c.1377+2T>G | splice_donor_variant, intron_variant | 1 | NM_000020.3 | ENSP00000373574.4 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 31
GnomAD4 exome
Cov.:
31
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Pathogenic
Submissions summary: Pathogenic:1
Revision: criteria provided, single submitter
LINK: link
Submissions by phenotype
Telangiectasia, hereditary hemorrhagic, type 2 Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Oct 27, 2017 | For these reasons, this variant has been classified as Pathogenic. A truncation (p.Arg479*) and a subgenic deletion (Ex10del) that lie downstream of this variant has been determined to be pathogenic (PMID: 15024723, 23722869, 16861286, 20414677). This suggests that deletion of this region of the ACVRL1 protein is causative of disease. Nucleotide substitutions within the consensus splice site are a relatively common cause of aberrant splicing (PMID: 17576681, 9536098). Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site, but this prediction has not been confirmed by published transcriptional studies. This variant has not been reported in the literature in individuals with ACVRL1-related disease. This variant is not present in population databases (ExAC no frequency). This sequence change affects a donor splice site in the last intron (intron 9) of the ACVRL1 gene. While this is not anticipated to result in nonsense mediated decay, it likely alters RNA splicing and results in a disrupted protein product. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Pathogenic
DANN
Uncertain
Eigen
Pathogenic
Eigen_PC
Pathogenic
FATHMM_MKL
Pathogenic
D
GERP RS
Splicing
Name
Calibrated prediction
Score
Prediction
dbscSNV1_ADA
Pathogenic
dbscSNV1_RF
Pathogenic
SpliceAI score (max)
Details are displayed if max score is > 0.2
DS_DL_spliceai
Position offset: -2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at