rs267607856
Variant summary
Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000249.4(MLH1):c.1731+2T>C variant causes a splice donor, intron change. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. 2/3 splice prediction tools predicting alterations to normal splicing. Variant has been reported in ClinVar as Likely pathogenic (★★).
Frequency
Consequence
NM_000249.4 splice_donor, intron
Scores
Clinical Significance
Conservation
Publications
- Lynch syndromeInheritance: AD Classification: DEFINITIVE, SUPPORTIVE Submitted by: G2P, ClinGen, Orphanet
- Lynch syndrome 2Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Ambry Genetics, Genomics England PanelApp
- Muir-Torre syndromeInheritance: AD Classification: DEFINITIVE, STRONG, MODERATE, SUPPORTIVE Submitted by: Genomics England PanelApp, Ambry Genetics, G2P, Orphanet
- mismatch repair cancer syndrome 1Inheritance: AR Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Ambry Genetics, G2P, Labcorp Genetics (formerly Invitae), Orphanet, ClinGen
- Lynch syndrome 1Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
- ovarian cancerInheritance: AD Classification: STRONG Submitted by: Genomics England PanelApp
- malignant pancreatic neoplasmInheritance: AD Classification: MODERATE Submitted by: Genomics England PanelApp
- rhabdomyosarcomaInheritance: AR Classification: MODERATE Submitted by: Genomics England PanelApp
- prostate cancerInheritance: AD Classification: LIMITED Submitted by: Ambry Genetics
- breast cancerInheritance: AD Classification: NO_KNOWN Submitted by: Ambry Genetics
- hereditary breast carcinomaInheritance: AD Classification: NO_KNOWN Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 18 ACMG points.
Transcripts
RefSeq
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
|---|---|---|---|---|---|---|---|---|
| MLH1 | NM_000249.4 | c.1731+2T>C | splice_donor_variant, intron_variant | Intron 15 of 18 | ENST00000231790.8 | NP_000240.1 |
Ensembl
| Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
|---|---|---|---|---|---|---|---|---|---|---|
| MLH1 | ENST00000231790.8 | c.1731+2T>C | splice_donor_variant, intron_variant | Intron 15 of 18 | 1 | NM_000249.4 | ENSP00000231790.3 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD4 exome Cov.: 28
GnomAD4 genome Cov.: 32
ClinVar
Submissions by phenotype
Lynch syndrome Pathogenic:1
MLH1 NM_000249.3:c.1731+2T>C has a 99.9% probability of pathogenicity based on combining prior probability from public data with a likelihood ratio of 26.5 to 1, generated from evidence of seeing this as a somatic mutation in a tumor with loss of heterozygosity at the MLH1 locus. See Shirts et al 2018, PMID 29887214. -
Hereditary nonpolyposis colorectal neoplasms Pathogenic:1
For these reasons, this variant has been classified as Pathogenic. Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site. ClinVar contains an entry for this variant (Variation ID: 455399). Disruption of this splice site has been observed in individuals with clinical features of Lynch syndrome (PMID: 17054581; Invitae). This variant is not present in population databases (gnomAD no frequency). This sequence change affects a donor splice site in intron 15 of the MLH1 gene. It is expected to disrupt RNA splicing. Variants that disrupt the donor or acceptor splice site typically lead to a loss of protein function (PMID: 16199547), and loss-of-function variants in MLH1 are known to be pathogenic (PMID: 15713769, 24362816). -
Hereditary cancer-predisposing syndrome Pathogenic:1
The c.1731+2T>C intronic variant results from a T to C substitution two nucleotides after coding exon 15 in the MLH1 gene. This nucleotide position is highly conserved in available vertebrate species. Using the BDGP and ESEfinder splice site prediction tools, this alteration is predicted to abolish the native splice donor site; however, direct evidence is unavailable. Alterations that disrupt the canonical splice site are expected to cause aberrant splicing, resulting in an abnormal protein or a transcript that is subject to nonsense-mediated mRNA decay. As such, this variant is classified as likely pathogenic. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at