rs371322658

Variant summary

Our verdict is Likely benign. Variant got -2 ACMG points: 0P and 2B. BP4_Moderate

The NM_001267550.2(TTN):​c.24769C>G​(p.Leu8257Val) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.000031 in 1,613,314 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a benign outcome for this variant. 15/18 in silico tools predict a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars).

Frequency

Genomes: š‘“ 0.000039 ( 0 hom., cov: 33)
Exomes š‘“: 0.000030 ( 0 hom. )

Consequence

TTN
NM_001267550.2 missense

Scores

16

Clinical Significance

Conflicting classifications of pathogenicity criteria provided, conflicting classifications P:1U:5B:3

Conservation

PhyloP100: 0.128
Variant links:
Genes affected
TTN (HGNC:12403): (titin) This gene encodes a large abundant protein of striated muscle. The product of this gene is divided into two regions, a N-terminal I-band and a C-terminal A-band. The I-band, which is the elastic part of the molecule, contains two regions of tandem immunoglobulin domains on either side of a PEVK region that is rich in proline, glutamate, valine and lysine. The A-band, which is thought to act as a protein-ruler, contains a mixture of immunoglobulin and fibronectin repeats, and possesses kinase activity. An N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle associated proteins so it serves as an adhesion template for the assembly of contractile machinery in muscle cells. It has also been identified as a structural protein for chromosomes. Alternative splicing of this gene results in multiple transcript variants. Considerable variability exists in the I-band, the M-line and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Mutations in this gene are associated with familial hypertrophic cardiomyopathy 9, and autoantibodies to titin are produced in patients with the autoimmune disease scleroderma. [provided by RefSeq, Feb 2012]
TTN-AS1 (HGNC:44124): (TTN antisense RNA 1) This gene encodes a non-coding RNA transcribed from the opposite strand to the titin gene. [provided by RefSeq, Aug 2016]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Likely_benign. Variant got -2 ACMG points.

BP4
Computational evidence support a benign effect (MetaRNN=0.07354435).

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
TTNNM_001267550.2 linkc.24769C>G p.Leu8257Val missense_variant Exon 85 of 363 ENST00000589042.5 NP_001254479.2 A0A0A0MTS7

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
TTNENST00000589042.5 linkc.24769C>G p.Leu8257Val missense_variant Exon 85 of 363 5 NM_001267550.2 ENSP00000467141.1 A0A0A0MTS7

Frequencies

GnomAD3 genomes
AF:
0.0000394
AC:
6
AN:
152176
Hom.:
0
Cov.:
33
show subpopulations
Gnomad AFR
AF:
0.00
Gnomad AMI
AF:
0.00
Gnomad AMR
AF:
0.00
Gnomad ASJ
AF:
0.00
Gnomad EAS
AF:
0.00
Gnomad SAS
AF:
0.00
Gnomad FIN
AF:
0.00
Gnomad MID
AF:
0.00
Gnomad NFE
AF:
0.0000882
Gnomad OTH
AF:
0.00
GnomAD3 exomes
AF:
0.0000282
AC:
7
AN:
248032
Hom.:
0
AF XY:
0.0000223
AC XY:
3
AN XY:
134576
show subpopulations
Gnomad AFR exome
AF:
0.00
Gnomad AMR exome
AF:
0.00
Gnomad ASJ exome
AF:
0.00
Gnomad EAS exome
AF:
0.00
Gnomad SAS exome
AF:
0.00
Gnomad FIN exome
AF:
0.00
Gnomad NFE exome
AF:
0.0000624
Gnomad OTH exome
AF:
0.00
GnomAD4 exome
AF:
0.0000301
AC:
44
AN:
1461138
Hom.:
0
Cov.:
35
AF XY:
0.0000371
AC XY:
27
AN XY:
726804
show subpopulations
Gnomad4 AFR exome
AF:
0.00
Gnomad4 AMR exome
AF:
0.00
Gnomad4 ASJ exome
AF:
0.00
Gnomad4 EAS exome
AF:
0.00
Gnomad4 SAS exome
AF:
0.00
Gnomad4 FIN exome
AF:
0.00
Gnomad4 NFE exome
AF:
0.0000396
Gnomad4 OTH exome
AF:
0.00
GnomAD4 genome
AF:
0.0000394
AC:
6
AN:
152176
Hom.:
0
Cov.:
33
AF XY:
0.00
AC XY:
0
AN XY:
74332
show subpopulations
Gnomad4 AFR
AF:
0.00
Gnomad4 AMR
AF:
0.00
Gnomad4 ASJ
AF:
0.00
Gnomad4 EAS
AF:
0.00
Gnomad4 SAS
AF:
0.00
Gnomad4 FIN
AF:
0.00
Gnomad4 NFE
AF:
0.0000882
Gnomad4 OTH
AF:
0.00
Alfa
AF:
0.0000565
Hom.:
0
Bravo
AF:
0.0000264
TwinsUK
AF:
0.00
AC:
0
ALSPAC
AF:
0.000259
AC:
1
ESP6500AA
AF:
0.00
AC:
0
ESP6500EA
AF:
0.000121
AC:
1
ExAC
AF:
0.0000414
AC:
5
EpiCase
AF:
0.00
EpiControl
AF:
0.000119

ClinVar

Significance: Conflicting classifications of pathogenicity
Submissions summary: Pathogenic:1Uncertain:5Benign:3
Revision: criteria provided, conflicting classifications
LINK: link

Submissions by phenotype

Tip-toe gait Pathogenic:1
-
Practice for Gait Abnormalities, David Pomarino, Competency Network Toe Walking c/o Practice Pomarino
Significance: Likely pathogenic
Review Status: no assertion criteria provided
Collection Method: clinical testing

Myopathy refers to diseases that affect skeletal Muscles. These diseases attack muscle fibers, making muscles weak. Inherited myopathies are often caused by inheriting an abnormal gene mutation from a parent that causes the disease. Symptoms of congenital myopathies usually start at birth or in early childhood, but may not appear until the teen years or even later in adulthood. Congenital myopathies are somewhat unique compared with other inherited myopathies, as weakness typically affects all muscles and is often not progressive. Symptoms are: Muscle weakness, most commonly of upper arms and shoulders and thighs, muscle cramps, stiffness and spasms, fatigue with exertion and lack of energy. Our patients all walk on tiptoe, so they show similar symptoms. When we genetically test them with our toe walking panel, we find that around 90 per cent of them have a genetic variant that explains their toe walking. These can be assigned, for example, to the area of myopathies (such as variants of the COL6A3 gene), the area of hereditary neuropathies (such as variants of the KMT2C gene) or the area of metabolic diseases (such as variants of the PYGM gene). In a smaller group of patients with almost identical symptoms, no abnormality is found in the genes of our panel, but spastic paraplegia can be detected. In another small group of our toe walkers, no abnormalities can be detected in the genes analysed in our toe walking panel, nor do they suffer from spastic paraplegia, as is also the case with healthy children. In contrast to these, however, they show a tiptoe gait. These patients suffer from infantile cerebral palsy, in which toe walking can also be observed. -

Autosomal recessive limb-girdle muscular dystrophy type 2J Uncertain:1
Jan 13, 2018
Illumina Laboratory Services, Illumina
Significance: Uncertain significance
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -

Autosomal recessive limb-girdle muscular dystrophy type 2J;C1858763:Dilated cardiomyopathy 1G Uncertain:1
Jan 05, 2018
Labcorp Genetics (formerly Invitae), Labcorp
Significance: Uncertain significance
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Cardiomyopathy Uncertain:1
Apr 09, 2020
CHEO Genetics Diagnostic Laboratory, Children's Hospital of Eastern Ontario
Significance: Uncertain significance
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Dilated cardiomyopathy 1G Uncertain:1
Jan 13, 2018
Illumina Laboratory Services, Illumina
Significance: Uncertain significance
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -

Early-onset myopathy with fatal cardiomyopathy Uncertain:1
Jan 13, 2018
Illumina Laboratory Services, Illumina
Significance: Uncertain significance
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -

not provided Benign:1
Jan 12, 2021
GeneDx
Significance: Likely benign
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Myopathy, myofibrillar, 9, with early respiratory failure Benign:1
Jan 13, 2018
Illumina Laboratory Services, Illumina
Significance: Likely benign
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as likely benign is not then subjected to further curation. The score for this variant resulted in a classification of likely benign for this disease. -

Tibial muscular dystrophy Benign:1
Jan 13, 2018
Illumina Laboratory Services, Illumina
Significance: Likely benign
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as likely benign is not then subjected to further curation. The score for this variant resulted in a classification of likely benign for this disease. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Benign
0.079
BayesDel_addAF
Benign
-0.28
T
BayesDel_noAF
Benign
-0.48
CADD
Benign
13
DANN
Benign
0.80
Eigen
Benign
-0.65
Eigen_PC
Benign
-0.55
FATHMM_MKL
Benign
0.13
N
LIST_S2
Benign
0.62
T;T;.;T
M_CAP
Benign
0.023
T
MetaRNN
Benign
0.074
T;T;T;T
MetaSVM
Benign
-0.86
T
PrimateAI
Benign
0.30
T
PROVEAN
Benign
-1.0
N;.;.;.
REVEL
Benign
0.083
Sift
Benign
0.54
T;.;.;.
Polyphen
0.0
.;.;B;B
Vest4
0.24
MVP
0.51
MPC
0.085
ClinPred
0.011
T
GERP RS
1.8

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs371322658; hg19: chr2-179583064; API