rs372454889
Positions:
Variant summary
Our verdict is Likely benign. Variant got -3 ACMG points: 2P and 5B. PM2BP4_StrongBP6
The NM_000057.4(BLM):c.934T>A(p.Ser312Thr) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a benign outcome for this variant. 15/21 in silico tools predict a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars).
Frequency
Genomes: not found (cov: 32)
Consequence
BLM
NM_000057.4 missense
NM_000057.4 missense
Scores
19
Clinical Significance
Conservation
PhyloP100: -0.110
Genes affected
BLM (HGNC:1058): (BLM RecQ like helicase) The Bloom syndrome is an autosomal recessive disorder characterized by growth deficiency, microcephaly and immunodeficiency among others. It is caused by homozygous or compound heterozygous mutation in the gene encoding DNA helicase RecQ protein on chromosome 15q26. This Bloom-associated helicase unwinds a variety of DNA substrates including Holliday junction, and is involved in several pathways contributing to the maintenance of genome stability. Identification of pathogenic Bloom variants is required for heterozygote testing in at-risk families. [provided by RefSeq, May 2020]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Likely_benign. Variant got -3 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
BP4
Computational evidence support a benign effect (MetaRNN=0.053124636).
BP6
Variant 15-90751921-T-A is Benign according to our data. Variant chr15-90751921-T-A is described in ClinVar as [Conflicting_classifications_of_pathogenicity]. Clinvar id is 842438.We mark this variant Likely_benign, oryginal submissions are: {Likely_benign=1, Uncertain_significance=1}.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
BLM | NM_000057.4 | c.934T>A | p.Ser312Thr | missense_variant | 4/22 | ENST00000355112.8 | NP_000048.1 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
BLM | ENST00000355112.8 | c.934T>A | p.Ser312Thr | missense_variant | 4/22 | 1 | NM_000057.4 | ENSP00000347232 | P2 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 30
GnomAD4 exome
Cov.:
30
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Conflicting classifications of pathogenicity
Submissions summary: Uncertain:1Benign:1
Revision: criteria provided, conflicting classifications
LINK: link
Submissions by phenotype
Bloom syndrome Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Jan 24, 2024 | This sequence change replaces serine, which is neutral and polar, with threonine, which is neutral and polar, at codon 312 of the BLM protein (p.Ser312Thr). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with BLM-related conditions. ClinVar contains an entry for this variant (Variation ID: 842438). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt BLM protein function with a negative predictive value of 80%. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. - |
Hereditary cancer-predisposing syndrome Benign:1
Likely benign, criteria provided, single submitter | clinical testing | Ambry Genetics | Mar 14, 2024 | This alteration is classified as likely benign based on a combination of the following: seen in unaffected individuals, population frequency, intact protein function, lack of segregation with disease, co-occurrence, RNA analysis, in silico models, amino acid conservation, lack of disease association in case-control studies, and/or the mechanism of disease or impacted region is inconsistent with a known cause of pathogenicity. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Benign
BayesDel_addAF
Benign
T
BayesDel_noAF
Benign
CADD
Benign
DANN
Benign
DEOGEN2
Benign
T;.
Eigen
Benign
Eigen_PC
Benign
FATHMM_MKL
Benign
N
LIST_S2
Benign
T;T
M_CAP
Benign
T
MetaRNN
Benign
T;T
MetaSVM
Benign
T
MutationAssessor
Benign
L;.
MutationTaster
Benign
N;N
PrimateAI
Benign
T
PROVEAN
Benign
N;N
REVEL
Benign
Sift
Benign
T;T
Sift4G
Benign
T;T
Polyphen
B;.
Vest4
MutPred
Gain of loop (P = 0.0079);Gain of loop (P = 0.0079);
MVP
MPC
ClinPred
T
GERP RS
RBP_binding_hub_radar
RBP_regulation_power_radar
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at