rs397515910
Variant summary
Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_000256.3(MYBPC3):c.1575T>G(p.Tyr525*) variant causes a stop gained change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Variant results in nonsense mediated mRNA decay.
Frequency
Consequence
NM_000256.3 stop_gained
Scores
Clinical Significance
Conservation
Publications
- hypertrophic cardiomyopathyInheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
- hypertrophic cardiomyopathy 4Inheritance: AD, AR Classification: DEFINITIVE, STRONG Submitted by: Ambry Genetics, G2P, Labcorp Genetics (formerly Invitae)
- left ventricular noncompaction 10Inheritance: AR, AD Classification: DEFINITIVE, MODERATE, LIMITED Submitted by: Ambry Genetics
- familial isolated dilated cardiomyopathyInheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
- arrhythmogenic right ventricular cardiomyopathyInheritance: AD Classification: LIMITED Submitted by: ClinGen
- atrial fibrillationInheritance: AD Classification: LIMITED Submitted by: Ambry Genetics
- dilated cardiomyopathyInheritance: AD Classification: LIMITED Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Pathogenic. The variant received 18 ACMG points.
Transcripts
RefSeq
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
MYBPC3 | ENST00000545968.6 | c.1575T>G | p.Tyr525* | stop_gained | Exon 17 of 35 | 5 | NM_000256.3 | ENSP00000442795.1 | ||
MYBPC3 | ENST00000399249.6 | c.1575T>G | p.Tyr525* | stop_gained | Exon 16 of 34 | 5 | ENSP00000382193.2 | |||
MYBPC3 | ENST00000544791.1 | n.1575T>G | non_coding_transcript_exon_variant | Exon 17 of 27 | 5 | ENSP00000444259.1 |
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD4 exome Cov.: 31
GnomAD4 genome Cov.: 33
ClinVar
Submissions by phenotype
Hypertrophic cardiomyopathy Pathogenic:2
The p.Tyr525X variant in MYBPC3 has been reported in one individual with HCM (Bo rtot 2011) and has been identified by our laboratory in one Caucasian individual with HCM. It has not been identified in large population studies. This variant leads to a premature termination codon at position 525, which is predicted to l ead to a truncated or absent protein. Heterozygous loss of function of the MYBPC 3 gene is an established disease mechanism in individuals with HCM. In summary, the p.Tyr525X variant meets our criteria to be classified as pathogenic for HCM in an autosomal dominant manner based upon the predicted impact to the protein. -
ClinVar contains an entry for this variant (Variation ID: 42547). This variant is not present in population databases (gnomAD no frequency). This premature translational stop signal has been observed in individual(s) with hypertrophic cardiomyopathy (PMID: 21817903, 30775854). For these reasons, this variant has been classified as Pathogenic. This sequence change creates a premature translational stop signal (p.Tyr525*) in the MYBPC3 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in MYBPC3 are known to be pathogenic (PMID: 19574547). -
not provided Pathogenic:1
Identified in patients with HCM in published literature (PMID: 21817903, 30775854, 27532257); at least one patient harbored additional cardiogenetic variants; Not observed at significant frequency in large population cohorts (gnomAD); Nonsense variant predicted to result in protein truncation or nonsense mediated decay in a gene for which loss of function is a known mechanism of disease; This variant is associated with the following publications: (PMID: 27532257, 21817903, 30775854) -
Primary familial hypertrophic cardiomyopathy Pathogenic:1
- -
Cardiovascular phenotype Pathogenic:1
The p.Y525* pathogenic mutation (also known as c.1575T>G), located in coding exon 17 of the MYBPC3 gene, results from a T to G substitution at nucleotide position 1575. This changes the amino acid from a tyrosine to a stop codon within coding exon 17. This mutation has been reported in multiple individuals with HCM (Bortot B et al. Diagn. Mol. Pathol., 2011 Sep;20:175-9; Walsh R et al. Genet. Med., 2017 02;19:192-203; Jääskeläinen P et al. ESC Heart Fail, 2019 Apr;6:436-445). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at