rs397515947

Variant summary

Our verdict is Pathogenic. Variant got 16 ACMG points: 16P and 0B. PVS1PP5_Very_Strong

The NM_000256.3(MYBPC3):​c.2096delC​(p.Pro699GlnfsTer55) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.00000616 in 1,461,686 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Pathogenic (★★). Variant results in nonsense mediated mRNA decay.

Frequency

Genomes: not found (cov: 33)
Exomes 𝑓: 0.0000062 ( 0 hom. )

Consequence

MYBPC3
NM_000256.3 frameshift

Scores

Not classified

Clinical Significance

Pathogenic criteria provided, multiple submitters, no conflicts P:12

Conservation

PhyloP100: 0.537
Variant links:
Genes affected
MYBPC3 (HGNC:7551): (myosin binding protein C3) MYBPC3 encodes the cardiac isoform of myosin-binding protein C. Myosin-binding protein C is a myosin-associated protein found in the cross-bridge-bearing zone (C region) of A bands in striated muscle. MYBPC3 is expressed exclusively in heart muscle and is a key regulator of cardiac contraction. Mutations in this gene are a frequent cause of familial hypertrophic cardiomyopathy. [provided by RefSeq, May 2022]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Pathogenic. Variant got 16 ACMG points.

PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PP5
Variant 11-47339375-TG-T is Pathogenic according to our data. Variant chr11-47339375-TG-T is described in ClinVar as [Pathogenic]. Clinvar id is 42596.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars. Variant chr11-47339375-TG-T is described in Lovd as [Pathogenic].

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
MYBPC3NM_000256.3 linkc.2096delC p.Pro699GlnfsTer55 frameshift_variant Exon 22 of 35 ENST00000545968.6 NP_000247.2 Q14896-1A5YM48

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
MYBPC3ENST00000545968.6 linkc.2096delC p.Pro699GlnfsTer55 frameshift_variant Exon 22 of 35 5 NM_000256.3 ENSP00000442795.1 Q14896-1
MYBPC3ENST00000399249.6 linkc.2096delC p.Pro699GlnfsTer55 frameshift_variant Exon 21 of 34 5 ENSP00000382193.2 A8MXZ9
MYBPC3ENST00000544791.1 linkn.2096delC non_coding_transcript_exon_variant Exon 22 of 27 5 ENSP00000444259.1 F5GZR4

Frequencies

GnomAD3 genomes
Cov.:
33
GnomAD4 exome
AF:
0.00000616
AC:
9
AN:
1461686
Hom.:
0
Cov.:
31
AF XY:
0.00000825
AC XY:
6
AN XY:
727132
show subpopulations
Gnomad4 AFR exome
AF:
0.00
Gnomad4 AMR exome
AF:
0.00
Gnomad4 ASJ exome
AF:
0.00
Gnomad4 EAS exome
AF:
0.00
Gnomad4 SAS exome
AF:
0.00
Gnomad4 FIN exome
AF:
0.00
Gnomad4 NFE exome
AF:
0.00000720
Gnomad4 OTH exome
AF:
0.0000166
GnomAD4 genome
Cov.:
33

ClinVar

Significance: Pathogenic
Submissions summary: Pathogenic:12
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

not provided Pathogenic:3
Jun 29, 2021
Mayo Clinic Laboratories, Mayo Clinic
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

PVS1, PM2, PS4_moderate, PP1 -

Jul 13, 2018
Blueprint Genetics
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Nov 01, 2021
GeneDx
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

Not observed at significant frequency in large population cohorts (Lek et al., 2016); Frameshift variant predicted to result in protein truncation or nonsense mediated decay in a gene for which loss-of-function is a known mechanism of disease; Reported as pathogenic by other clinical laboratories in ClinVar (ClinVar Variant ID# 42596; Landrum et al., 2016); This variant is associated with the following publications: (PMID: 15114369, 25351510, 9562578, 24793961, 15519027, 22122802, 26743238, 26914223, 27532257, 28615295, 31006259, 23549607, 33087929) -

Hypertrophic cardiomyopathy Pathogenic:3
Nov 28, 2017
Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

The p.Pro699fs variant (also referred to as Ala698fs and A698fs54) in MYBPC3 has been reported in 8 individuals with HCM and segregated with disease in 5 affect ed family members (Nimura 1998, Van Driest 2004, Wilson 2011, Bos 2014, LMM data ). It has not been identified in large population studies. This variant is predi cted to cause a frameshift, which alters the protein?s amino acid sequence begin ning at position 699 and leads to a premature termination codon 55 amino acids d ownstream. This alteration is then predicted to lead to a truncated or absent pr otein. Heterozygous loss of MYBPC3 function is an established disease mechanism in HCM. In summary, this variant meets criteria to be classified as pathogenic b ased upon segregation studies, absence from controls, and the predicted impact t o the protein. ACMG/AMP criteria applied: PVS1, PS4, PP1_Moderate. -

Dec 25, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This sequence change creates a premature translational stop signal (p.Pro699Glnfs*55) in the MYBPC3 gene. It is expected to result in an absent or disrupted protein product. Loss-of-function variants in MYBPC3 are known to be pathogenic (PMID: 19574547). This variant is not present in population databases (gnomAD no frequency). This premature translational stop signal has been observed in individuals with hypertrophic cardiomyopathy (HCM) (PMID: 9562578, 15519027, 22122802, 24793961, 26914223). It has also been observed to segregate with disease in related individuals. This variant is also known as delC698 and A698fs/54. ClinVar contains an entry for this variant (Variation ID: 42596). For these reasons, this variant has been classified as Pathogenic. -

Aug 05, 2024
All of Us Research Program, National Institutes of Health
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant deletes 1 nucleotide in exon 22 in the Ig-like domain C5 of the MYBPC3 gene (also known as DelC698 and A698 fs/54 in the literature), creating a frameshift and premature translation stop signal. This variant is expected to result in an absent or non-functional protein product. This variant has been reported in over 20 individuals affected with hypertrophic cardiomyopathy (PMID: 9562578, 15519027, 20031618, 22122802, 23549607, 24793961, 25351510, 26914223, 27532257, 28408708, 32731933, 32841044, 33495597, 34310159; Color internal data). It has been shown that this variant segregates with disease in multiple affected individuals across 2 families (PMID: 9562578, 22122802). This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Loss of MYBPC3 function is a known mechanism of disease (clinicalgenome.org). Based on the available evidence, this variant is classified as Pathogenic. -

Cardiomyopathy Pathogenic:2
Jun 28, 2021
CHEO Genetics Diagnostic Laboratory, Children's Hospital of Eastern Ontario
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Jun 09, 2023
Color Diagnostics, LLC DBA Color Health
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This variant deletes 1 nucleotide in exon 22 in the Ig-like domain C5 of the MYBPC3 gene (also known as DelC698 and A698 fs/54 in the literature), creating a frameshift and premature translation stop signal. This variant is expected to result in an absent or non-functional protein product. This variant has been reported in over 20 individuals affected with hypertrophic cardiomyopathy (PMID: 9562578, 15519027, 20031618, 22122802, 23549607, 24793961, 25351510, 26914223, 27532257, 28408708, 32731933, 32841044, 33495597, 34310159; Color internal data). It has been shown that this variant segregates with disease in multiple affected individuals across 2 families (PMID: 9562578, 22122802). This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Loss of MYBPC3 function is a known mechanism of disease (clinicalgenome.org). Based on the available evidence, this variant is classified as Pathogenic. -

Hypertrophic cardiomyopathy 4 Pathogenic:2
Mar 15, 2021
Genetics and Molecular Pathology, SA Pathology
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

- -

Mar 31, 2022
Victorian Clinical Genetics Services, Murdoch Childrens Research Institute
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

Based on the classification scheme VCGS_Germline_v1.3.4, this variant is classified as Pathogenic. Following criteria are met: 0102 - Loss of function is a known mechanism of disease in this gene and is associated with hypertrophic cardiomyopathy 4 (HCM; MIM#115197). (I) 0108 - This gene is associated with both recessive and dominant disease. Dominant inheritance is frequently reported in adult onset conditions, however recessive inheritance results in a more severe early onset phenotype (OMIM). (I) 0115 - Variants in this gene are known to have variable expressivity (PMID: 32841044). (I) 0201 - Variant is predicted to cause nonsense-mediated decay (NMD) and loss of protein (premature termination codon is located at least 54 nucleotides upstream of the final exon-exon junction). (SP) 0251 - This variant is heterozygous. (I) 0301 - Variant is absent from gnomAD (both v2 and v3). (SP) 0701 - Other NMD-predicted variants comparable to the one identified in this case have very strong previous evidence for pathogenicity. These variants have been reported many times as pathogenic and observed in individuals with hypertrophic cardiomyopathy (HCM) (DECIPHER). (SP) 0801 - This variant has strong previous evidence of pathogenicity in unrelated individuals. This variant has been reported many times as pathogenic, and observed in individuals with HCM (ClinVar, cardiodb.org, PMID: 26743238). (SP) 1208 - Inheritance information for this variant is not currently available in this individual. (I) Legend: (SP) - Supporting pathogenic, (I) - Information, (SB) - Supporting benign -

Primary dilated cardiomyopathy;C0007194:Hypertrophic cardiomyopathy Pathogenic:1
Aug 01, 2017
Agnes Ginges Centre for Molecular Cardiology, Centenary Institute
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: research

This variant has been identified as part of our research program. Refer to the 'condition' field for the phenotype of the proband(s) identified with this variant. For further information please feel free to contact us. -

Cardiovascular phenotype Pathogenic:1
Aug 07, 2023
Ambry Genetics
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

The c.2096delC pathogenic mutation, located in coding exon 22 of the MYBPC3 gene, results from a deletion of one nucleotide at nucleotide position 2096, causing a translational frameshift with a predicted alternate stop codon (p.P699Qfs*55). This mutation has been reported in multiple individuals and families with hypertrophic cardiomyopathy (Niimura H et al. N. Engl. J. Med., 1998 Apr;338:1248-57; Van Driest SL et al. J. Am. Coll. Cardiol., 2004 Nov;44:1903-10; Wilson MG et al. J Cardiovasc Magn Reson, 2011 Nov;13:77; Bos JM et al. Mayo Clin. Proc., 2014 Jun;89:727-37; Murphy SL et al. J Cardiovasc Transl Res, 2016 Apr;9:153-61). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). In addition to the clinical data presented in the literature, this alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted as a disease-causing mutation. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs397515947; hg19: chr11-47360926; API