rs397516457

Variant summary

Our verdict is Pathogenic. The variant received 18 ACMG points: 18P and 0B. PM1PM2PM5PP3_StrongPP5_Very_Strong

The NM_001276345.2(TNNT2):​c.311G>T​(p.Arg104Leu) variant causes a missense change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,760 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a pathogenic outcome for this variant. 14/23 in silico tools predict a damaging outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. R104C) has been classified as Likely pathogenic.

Frequency

Genomes: not found (cov: 32)
Exomes 𝑓: 6.8e-7 ( 0 hom. )

Consequence

TNNT2
NM_001276345.2 missense

Scores

18
1
1

Clinical Significance

Pathogenic/Likely pathogenic criteria provided, multiple submitters, no conflicts P:11

Conservation

PhyloP100: 7.89

Publications

34 publications found
Variant links:
Genes affected
TNNT2 (HGNC:11949): (troponin T2, cardiac type) This gene encodes the cardiac isoform of troponin T. The encoded protein is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration. Mutations in this gene have been associated with familial hypertrophic cardiomyopathy as well as with dilated cardiomyopathy. [provided by RefSeq, May 2022]
TNNT2 Gene-Disease associations (from GenCC):
  • dilated cardiomyopathy
    Inheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
  • dilated cardiomyopathy 1D
    Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), Ambry Genetics
  • hypertrophic cardiomyopathy
    Inheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
  • hypertrophic cardiomyopathy 2
    Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: PanelApp Australia, G2P, Ambry Genetics, Labcorp Genetics (formerly Invitae)
  • hypertrophic cardiomyopathy 3
    Inheritance: AD Classification: DEFINITIVE Submitted by: G2P
  • cardiomyopathy, familial restrictive, 3
    Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
  • familial isolated dilated cardiomyopathy
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • familial isolated restrictive cardiomyopathy
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • left ventricular noncompaction
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • cardiomyopathy
    Inheritance: AR Classification: LIMITED Submitted by: Ambry Genetics
  • arrhythmogenic right ventricular cardiomyopathy
    Inheritance: AD Classification: NO_KNOWN Submitted by: ClinGen

Genome browser will be placed here

ACMG classification

Classification was made for transcript

Our verdict: Pathogenic. The variant received 18 ACMG points.

PM1
In a hotspot region, there are 17 aminoacids with missense pathogenic changes in the window of +-8 aminoacids around while only 0 benign, 18 uncertain in NM_001276345.2
PM2
Very rare variant in population databases, with high coverage;
PM5
Other missense variant is known to change same aminoacid residue: Variant chr1-201365292-G-A is described in ClinVar as Pathogenic/Likely_pathogenic. ClinVar VariationId is 165549.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.
PP3
MetaRNN computational evidence supports a deleterious effect, 0.946
PP5
Variant 1-201365291-C-A is Pathogenic according to our data. Variant chr1-201365291-C-A is described in ClinVar as Pathogenic/Likely_pathogenic. ClinVar VariationId is 43629.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars.

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
TNNT2NM_001276345.2 linkc.311G>T p.Arg104Leu missense_variant Exon 10 of 17 ENST00000656932.1 NP_001263274.1 P45379-1

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
TNNT2ENST00000656932.1 linkc.311G>T p.Arg104Leu missense_variant Exon 10 of 17 NM_001276345.2 ENSP00000499593.1 P45379-1

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
AF:
6.84e-7
AC:
1
AN:
1461760
Hom.:
0
Cov.:
33
AF XY:
0.00000138
AC XY:
1
AN XY:
727196
show subpopulations
African (AFR)
AF:
0.00
AC:
0
AN:
33476
American (AMR)
AF:
0.00
AC:
0
AN:
44722
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
26136
East Asian (EAS)
AF:
0.00
AC:
0
AN:
39700
South Asian (SAS)
AF:
0.00
AC:
0
AN:
86254
European-Finnish (FIN)
AF:
0.00
AC:
0
AN:
53398
Middle Eastern (MID)
AF:
0.00
AC:
0
AN:
5766
European-Non Finnish (NFE)
AF:
8.99e-7
AC:
1
AN:
1111914
Other (OTH)
AF:
0.00
AC:
0
AN:
60394
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.475
Heterozygous variant carriers
0
0
1
1
2
2
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Exome Het
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
GnomAD4 genome
Cov.:
32
Alfa
AF:
0.0000853
Hom.:
0

ClinVar

Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:11
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

not provided Pathogenic:2
May 20, 2022
GeneDx
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Published functional studies demonstrated altered calcium regulation of muscle contraction (Lu et al., 2003; Harada et al., 2004); In silico analysis supports that this missense variant has a deleterious effect on protein structure/function; This variant is associated with the following publications: (PMID: 14654368, 10525521, 28073646, 22144547, 27532257, 11606294, 14722098, 18258667, 23074333, 25611685, 32659924, 30165862, 20513729) -

Sep 03, 2014
Stanford Center for Inherited Cardiovascular Disease, Stanford University
Significance:Likely pathogenic
Review Status:no assertion criteria provided
Collection Method:clinical testing

Note this variant was found in clinical genetic testing performed by one or more labs who may also submit to ClinVar. Thus any internal case data may overlap with the internal case data of other labs. The interpretation reviewed below is that of the Stanford Center for Inherited Cardiovascular Disease. TNNT2 variant Arg94Leu (R94L; c.281G>T at the nucleotide level) The variant has been reported in at least 3 unrelated cases of HCM with moderate segregation data in one family and functional data available. Varnava et al. (1999, 2001) identified this variant in an HCM family with a history of four SCD under age 45. It segregated with the disease in 3 affected family members tested, which included two siblings and their cousin. In addition, a child of one of the siblings who had an abnormal ECG but normal echo at age 6 also had the variant. Melacini et al. (2010) detected the variant in an Italian HCM transplant patient. Pasquale et al. (2011) detected it in an HCM patient followed in the UK. Another change at this same codon, Arg94Cys, has been associated with HCM (we consider that variant to be of uncertain significance, probably disease causing). Variation at nearby loci of TNNT2 (within 10 amino acids to either side) has been associated with disease, supporting the functional importance of this region of the protein. These HCM variants include Val85Leu, Asp86Ala, Arg92Trp, Arg92Gln, Arg92Leu, Lys97Asn and Ala104Val (Willott et al. 2010; Harvard Sarcomere Protein Gene Mutation Database). The region between residues ~80-180 of TNNT2 has been described as essential for anchoring the troponin-tropomyosin complex to the thin filament (Hinkle et al. 1999, Palm et al. 2001). In vitro functional data from Palm et al. (2001) suggests that the Arg94Leu variant impairs binding of troponin T to tropomyosin and makes the protein less effective at promoting the binding of tropomyosin to actin. Lu et al. (2003) found it increased the calcium sensitivity of force generation, but had no effect on the protein’s affinity for tropomyosin. Harada & Potter (2004) showed the variant to alter the contractile properties of skinned cardiac fibers, including the response of cardiac contraction to changes in pH. This is a nonconservative amino acid change from a basic, positively-charged Arginine to a nonpolar Leucine. The Arginine at codon 94 is completely conserved across 39 vertebrate species examined. In silico analysis with PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) predicts the variant to be “probably damaging”. Pasquale et al. (2011) report that the SIFT prediction for the variant is “not tolerated”. In total the variant has not been seen in ~6190 published controls and publicly available population datasets. There is no variation at codon 94 listed in the NHLBI Exome Sequencing Project dataset, which currently includes variant calls on ~3500 Caucasian and ~1800 African American individuals (as of 1/15/2012). There is no variation at this codon listed in dbSNP or 1000 genomes (as of 1/15/2012). The variant was not observed in published controls: Varnava et al. (1999) did not find the variant in 100 normal controls. Varnava et al. (2001) did not detect it in at least 90 control individuals. Melacini et al. (2010) did not find it in 400 (Italian?) controls. Pasquale et al. (2011) did not find it in 200 Caucasian controls. -

Hypertrophic cardiomyopathy Pathogenic:2
Mar 19, 2018
Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

proposed classification - variant undergoing re-assessment, contact laboratory -

Nov 28, 2023
All of Us Research Program, National Institutes of Health
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This missense variant replaces arginine with leucine at codon 94 in the tropomyosin binding domain 1 of the TNNT2 protein. Computational prediction suggests that this variant may have a deleterious impact on protein structure and function (internally defined REVEL score threshold >= 0.7, PMID: 27666373). Experimental functional studies using rabbit skinned muscle fibers have shown that this variant causes an increase in calcium sensitivity (PMID: 14654368, 14722098). In-vitro functional characterization studies have shown that this variant causes instability in the tropomyosin overlap complex (PMID: 11606294). This variant has been reported in multiple individuals affected with hypertrophic cardiomyopathy (PMID: 10525521, 20513729, 22144547, 27532257, 28073646, 32659924, 33495597). It has been shown that this variant segregates with disease in two affected individuals in one family (PMID: 28073646). This variant has also been reported in an individual affected with restrictive cardiomyopathy (PMID: 30165862). This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Different variants affecting the same codon, p.Arg94His and p.Arg94Cys, are considered to be disease-causing (ClinVar variation ID: 43628 and 165549), suggesting that arginine at this position is important for TNNT2 protein function. Based on the available evidence, this variant is classified as Likely Pathogenic. -

Dilated cardiomyopathy 1D Pathogenic:1
Apr 11, 2023
Genome-Nilou Lab
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

- -

Dilated cardiomyopathy 1D;C1861864:Hypertrophic cardiomyopathy 2 Pathogenic:1
Dec 31, 2019
Human Genome Sequencing Center Clinical Lab, Baylor College of Medicine
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The c.281G>T variant results in an amino acid change from an arginine to a leucine at codon 94 of the TNNT2 protein (p.Arg94Leu). The variant has been reported in an individual with familial hypertrophic cardiomyopathy (HCM) and segregates in the family (PMID: 10525521). It has also been reported in multiple unrelated individuals affected with HCM (PMID: 27532257). Functional studies support an effect of this variant on calcium-dependent force generation (PMID: 14654368). Different missense variants at this location (p.Arg94Cys, p.Arg94His) have been reported in association with HCM (PMID: 22112859, 23711808, 2003160, 20624503). This variant is not present in population databases (gnomAD). Therefore, this variant in the TNNT2 gene is classified as likely pathogenic. -

Cardiomyopathy Pathogenic:1
Feb 12, 2024
Color Diagnostics, LLC DBA Color Health
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This missense variant replaces arginine with leucine at codon 94 in the tropomyosin binding domain 1 of the TNNT2 protein. Computational prediction tools indicate that this variant has a deleterious impact on protein structure and function. Experimental functional studies using rabbit skinned muscle fibers have shown that this variant causes an increase in calcium sensitivity (PMID: 14654368, 14722098). In-vitro functional characterization studies have shown that this variant causes instability in the tropomyosin overlap complex (PMID: 11606294). This variant has been reported in multiple individuals affected with hypertrophic cardiomyopathy (PMID: 10525521, 20513729, 22144547, 27532257, 28073646, 32659924, 33495597, 35176171). It has been shown that this variant segregates with disease in two affected individuals in one family (PMID: 28073646). This variant has also been reported in one individual affected with restrictive cardiomyopathy (PMID: 30165862) and in one individual affected with an unspecified cardiomyopathy (PMID: 37477868). This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). Different variants affecting the same codon, p.Arg94His and p.Arg94Cys, are considered to be disease-causing (ClinVar variation ID: 43628 and 165549), suggesting that arginine at this position is important for TNNT2 protein function. Based on the available evidence, this variant is classified as Likely Pathogenic. -

Cardiomyopathy, familial restrictive, 3 Pathogenic:1
Apr 11, 2023
Genome-Nilou Lab
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

- -

Hypertrophic cardiomyopathy 2 Pathogenic:1
Apr 11, 2023
Genome-Nilou Lab
Significance:Likely pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

- -

Cardiovascular phenotype Pathogenic:1
Apr 22, 2024
Ambry Genetics
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The p.R94L pathogenic mutation (also known as c.281G>T), located in coding exon 8 of the TNNT2 gene, results from a G to T substitution at nucleotide position 281. The arginine at codon 94 is replaced by leucine, an amino acid with dissimilar properties. This alteration has been reported in several hypertrophic cardiomyopathy (HCM) cohorts and has been shown to segregate with disease in a family (Varnava A et al. Heart. 1999;82:621-4; Melacini P et al. Eur Heart J. 2010 Sep;31(17):2111-23; Pasquale F et al. Circ Cardiovasc Genet. 2012 Feb;5(1):10-7). Functional in vitro analyses involving skinned cardiac fibers have suggested that this alteration affects TNNT2 protein function (Lu QW et al. J Mol Cell Cardiol. 2003;35:1421-7). In addition, an alteration involving the same amino acid, p.R94H (c.281G>A), has been reported in individuals with HCM (Millat G et al. Eur J Med Genet. 2010;53:261-7). This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). Based on the supporting evidence, this alteration is interpreted as a disease-causing mutation. -

Dilated cardiomyopathy 1D;C1861864:Hypertrophic cardiomyopathy 2;C2676271:Cardiomyopathy, familial restrictive, 3 Pathogenic:1
Feb 01, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance:Pathogenic
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This sequence change replaces arginine, which is basic and polar, with leucine, which is neutral and non-polar, at codon 94 of the TNNT2 protein (p.Arg94Leu). This variant is not present in population databases (gnomAD no frequency). This missense change has been observed in individuals with hypertrophic cardiomyopathy (PMID: 10525521, 27532257). It has also been observed to segregate with disease in related individuals. ClinVar contains an entry for this variant (Variation ID: 43629). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt TNNT2 protein function with a positive predictive value of 95%. Experimental studies have shown that this missense change affects TNNT2 function (PMID: 14654368, 14722098). This variant disrupts the p.Arg94 amino acid residue in TNNT2. Other variant(s) that disrupt this residue have been determined to be pathogenic (PMID: 10978365). This suggests that this residue is clinically significant, and that variants that disrupt this residue are likely to be disease-causing. For these reasons, this variant has been classified as Pathogenic. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
0.97
CardioboostCm
Pathogenic
0.99
BayesDel_addAF
Pathogenic
0.56
D
BayesDel_noAF
Pathogenic
0.56
CADD
Pathogenic
33
DANN
Uncertain
1.0
DEOGEN2
Pathogenic
0.97
.;.;.;D;.;.;.;.;D;.;.;D
Eigen
Pathogenic
0.91
Eigen_PC
Pathogenic
0.83
FATHMM_MKL
Pathogenic
0.98
D
LIST_S2
Pathogenic
0.99
.;D;D;D;D;D;.;D;.;.;D;.
M_CAP
Pathogenic
0.70
D
MetaRNN
Pathogenic
0.95
D;D;D;D;D;D;D;D;D;D;D;D
MetaSVM
Pathogenic
1.1
D
MutationAssessor
Pathogenic
3.1
.;.;.;M;.;.;.;.;.;.;.;.
PhyloP100
7.9
PrimateAI
Pathogenic
0.84
D
PROVEAN
Pathogenic
-6.5
D;D;.;.;.;.;.;D;D;D;D;D
REVEL
Pathogenic
0.98
Sift
Pathogenic
0.0
D;D;.;.;.;.;.;D;D;D;D;D
Sift4G
Pathogenic
0.0010
D;D;D;D;D;D;D;D;.;D;D;.
Polyphen
1.0
.;.;.;D;.;.;.;.;D;.;.;.
Vest4
0.95
MutPred
0.74
.;.;.;Loss of methylation at K103 (P = 0.0781);.;.;.;.;.;Loss of methylation at K103 (P = 0.0781);.;.;
MVP
0.95
MPC
1.6
ClinPred
1.0
D
GERP RS
5.0
Varity_R
0.91
gMVP
0.97
Mutation Taster
=0/100
disease causing (ClinVar)

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.010
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

Other links and lift over

dbSNP: rs397516457; hg19: chr1-201334419; API