rs397517758
Positions:
Variant summary
Our verdict is Pathogenic. Variant got 18 ACMG points: 18P and 0B. PVS1PM2PP5_Very_Strong
The NM_001267550.2(TTN):βc.93897delβ(p.Phe31299LeufsTer14) variant causes a frameshift change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,620 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Likely pathogenic (β β ). Variant results in nonsense mediated mRNA decay.
Frequency
Genomes: not found (cov: 32)
Exomes π: 6.8e-7 ( 0 hom. )
Consequence
TTN
NM_001267550.2 frameshift
NM_001267550.2 frameshift
Scores
Not classified
Clinical Significance
Conservation
PhyloP100: 0.769
Genes affected
TTN (HGNC:12403): (titin) This gene encodes a large abundant protein of striated muscle. The product of this gene is divided into two regions, a N-terminal I-band and a C-terminal A-band. The I-band, which is the elastic part of the molecule, contains two regions of tandem immunoglobulin domains on either side of a PEVK region that is rich in proline, glutamate, valine and lysine. The A-band, which is thought to act as a protein-ruler, contains a mixture of immunoglobulin and fibronectin repeats, and possesses kinase activity. An N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle associated proteins so it serves as an adhesion template for the assembly of contractile machinery in muscle cells. It has also been identified as a structural protein for chromosomes. Alternative splicing of this gene results in multiple transcript variants. Considerable variability exists in the I-band, the M-line and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Mutations in this gene are associated with familial hypertrophic cardiomyopathy 9, and autoantibodies to titin are produced in patients with the autoimmune disease scleroderma. [provided by RefSeq, Feb 2012]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Pathogenic. Variant got 18 ACMG points.
PVS1
Loss of function variant, product undergoes nonsense mediated mRNA decay. LoF is a known mechanism of disease.
PM2
Very rare variant in population databases, with high coverage;
PP5
Variant 2-178547728-TA-T is Pathogenic according to our data. Variant chr2-178547728-TA-T is described in ClinVar as [Likely_pathogenic]. Clinvar id is 47535.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars. Variant chr2-178547728-TA-T is described in Lovd as [Likely_pathogenic].
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
TTN | NM_001267550.2 | c.93897del | p.Phe31299LeufsTer14 | frameshift_variant | 339/363 | ENST00000589042.5 | NP_001254479.2 | |
TTN-AS1 | NR_038272.1 | n.2043+5370del | intron_variant, non_coding_transcript_variant |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
TTN | ENST00000589042.5 | c.93897del | p.Phe31299LeufsTer14 | frameshift_variant | 339/363 | 5 | NM_001267550.2 | ENSP00000467141 | P1 | |
TTN-AS1 | ENST00000659121.1 | n.416+24095del | intron_variant, non_coding_transcript_variant |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome AF: 6.84e-7 AC: 1AN: 1461620Hom.: 0 Cov.: 34 AF XY: 0.00 AC XY: 0AN XY: 727102
GnomAD4 exome
AF:
AC:
1
AN:
1461620
Hom.:
Cov.:
34
AF XY:
AC XY:
0
AN XY:
727102
Gnomad4 AFR exome
AF:
Gnomad4 AMR exome
AF:
Gnomad4 ASJ exome
AF:
Gnomad4 EAS exome
AF:
Gnomad4 SAS exome
AF:
Gnomad4 FIN exome
AF:
Gnomad4 NFE exome
AF:
Gnomad4 OTH exome
AF:
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
Bravo
AF:
ClinVar
Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:4
Revision: criteria provided, multiple submitters, no conflicts
LINK: link
Submissions by phenotype
Autosomal recessive limb-girdle muscular dystrophy type 2J;C1858763:Dilated cardiomyopathy 1G Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Jan 22, 2023 | In summary, the currently available evidence indicates that the variant is pathogenic, but additional data are needed to prove that conclusively. Therefore, this variant has been classified as Likely Pathogenic. This variant is located in the A band of TTN (PMID: 25589632). Truncating variants in this region are significantly overrepresented in patients affected with dilated cardiomyopathy (PMID: 25589632). Truncating variants in this region have also been reported in individuals affected with autosomal recessive centronuclear myopathy (PMID: 23975875). ClinVar contains an entry for this variant (Variation ID: 47535). This variant is also known as c.86193del (p.Phe28731LeufsX14). This premature translational stop signal has been observed in individual(s) with clinical features of dilated cardiomyopathy (PMID: 24503780). This variant is not present in population databases (gnomAD no frequency). This sequence change creates a premature translational stop signal (p.Phe31299Leufs*14) in the TTN gene. While this is not anticipated to result in nonsense mediated decay, it is expected to create a truncated TTN protein. - |
not provided Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | GeneDx | May 08, 2014 | c.88974delT: p.Phe29658LeufsX14 (F29658LfsX14) in exon 289 of the TTN gene (NM_001256850.1). The normal sequence with the bases that are deleted in braces is: CATT{T}AGCG. Truncating mutations in the TTN gene are expected to account for approximately 25% of familial and 18% of sporadic idiopathic dilated cardiomyopathy (DCM) (Herman D et al., 2012). However, truncating variants in the TTN gene have been reported in approximately 3% of reported control alleles (Herman D et al., 2012). TTN mutations may also be associated with congenital cardiac and skeletal myopathies, hereditary myopathy with early respiratory failure, tibial muscular dystrophy, and limb-girdle muscular dystrophy (Lange S et al., 2005; Hackman P et al., 2002; Carmignac V et al., 2007; Hackman P et al., 2008). Although the c.88974delT mutation in the TTN gene has not been reported to our knowledge, this mutation causes a shift in reading frame starting at codon Phenylalanine 29658, changing it to a Leucine, and creating a premature stop codon at position 14 of the new reading frame, denoted p.Phe29658LeufsX14. This mutation is expected to result in either an abnormal, truncated protein product or loss of protein from this allele through nonsense-mediated mRNA decay. Other truncating TTN variants have been reported in approximately 3% of control alleles (Herman et al., 2012). However, c.88974delT is located in the A-band region of titin, where the majority of truncating mutations associated with DCM have been reported (Herman et al., 2012). In summary, c.88974delT in the TTN gene is interpreted as a disease-causing mutation. The variant is found in CARDIOMYOPATHY panel(s). - |
Primary dilated cardiomyopathy Pathogenic:1
Likely pathogenic, criteria provided, single submitter | clinical testing | Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine | Aug 25, 2014 | proposed classification - variant undergoing re-assessment, contact laboratory - |
Cardiovascular phenotype Pathogenic:1
Pathogenic, criteria provided, single submitter | clinical testing | Ambry Genetics | May 03, 2022 | The c.66702delT pathogenic mutation, located in coding exon 166 of the TTN gene, results from a deletion of one nucleotide at nucleotide position 66702, causing a translational frameshift with a predicted alternate stop codon (p.F22234Lfs*14). This exon is located in the A-band region of the N2-B isoform of the titin protein and is constitutively expressed in TTN transcripts (percent spliced in or PSI 100%). This variant (referred to as c.93897del, p.Phe31299LeufsX14) has been detected in a dilated cardiomyopathy cohort (Pugh TJ et al. Genet Med, 2014 Aug;16:601-8; Walsh R et al. Genet Med, 2017 02;19:192-203). This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). This alteration is expected to result in loss of function by premature protein truncation or nonsense-mediated mRNA decay. While truncating variants in TTN are present in 1-3% of the general population, truncating variants in the A-band are the most common cause of dilated cardiomyopathy (DCM) (Herman DS et al. N. Engl. J. Med., 2012 Feb;366:619-28; Roberts AM et al. Sci Transl Med, 2015 Jan;7:270ra6). TTN truncating variants encoded in constitutive exons (PSI >90%) have been found to be significantly associated with DCM regardless of their position in titin (Schafer S et al. Nat. Genet., 2017 01;49:46-53). Based on the supporting evidence, this alteration is interpreted as a disease-causing mutation. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at