rs56399205
Variant summary
Our verdict is Likely benign. Variant got -6 ACMG points: 0P and 6B. BP4BP6BS2
The NM_001267550.2(TTN):āc.72146T>Cā(p.Leu24049Pro) variant causes a missense change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.00116 in 1,613,410 control chromosomes in the GnomAD database, including 4 homozygotes. In-silico tool predicts a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars).
Frequency
Consequence
NM_001267550.2 missense
Scores
Clinical Significance
Conservation
Genome browser will be placed here
ACMG classification
Verdict is Likely_benign. Variant got -6 ACMG points.
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
TTN | NM_001267550.2 | c.72146T>C | p.Leu24049Pro | missense_variant | Exon 326 of 363 | ENST00000589042.5 | NP_001254479.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | Exon rank | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
TTN | ENST00000589042.5 | c.72146T>C | p.Leu24049Pro | missense_variant | Exon 326 of 363 | 5 | NM_001267550.2 | ENSP00000467141.1 |
Frequencies
GnomAD3 genomes AF: 0.000690 AC: 105AN: 152104Hom.: 0 Cov.: 32
GnomAD3 exomes AF: 0.000564 AC: 140AN: 248224Hom.: 0 AF XY: 0.000572 AC XY: 77AN XY: 134704
GnomAD4 exome AF: 0.00121 AC: 1765AN: 1461188Hom.: 4 Cov.: 38 AF XY: 0.00118 AC XY: 861AN XY: 726882
GnomAD4 genome AF: 0.000690 AC: 105AN: 152222Hom.: 0 Cov.: 32 AF XY: 0.000538 AC XY: 40AN XY: 74402
ClinVar
Submissions by phenotype
not provided Uncertain:4Benign:2
This variant is associated with the following publications: (PMID: 23396983, 17344846, 23861362) -
TTN: BS2 -
- -
- -
The TTN c.72146T>C; p.Leu24049Pro variant (rs56399205; ClinVar Variation ID: 191903) is rare in the general population (<0.2% allele frequency in the Genome Aggregation Database) and has not been reported in the medical literature in association with dilated cardiomyopathy (DCM) or other TTN-related disease. The clinical relevance of rare missense variants in this gene, which are identified on average once per individual sequenced in affected populations (Herman 2012), is not well understood. Yet, evidence suggests that the vast majority of such missense variants do not contribute to the clinical outcome of DCM (Begay 2015). Thus, the clinical significance of the p.Leu24049Pro variant cannot be determined with certainty. -
PP3 -
Tip-toe gait Pathogenic:1
Myopathy refers to diseases that affect skeletal Muscles. These diseases attack muscle fibers, making muscles weak. Inherited myopathies are often caused by inheriting an abnormal gene mutation from a parent that causes the disease. Symptoms of congenital myopathies usually start at birth or in early childhood, but may not appear until the teen years or even later in adulthood. Congenital myopathies are somewhat unique compared with other inherited myopathies, as weakness typically affects all muscles and is often not progressive. Symptoms are: Muscle weakness, most commonly of upper arms and shoulders and thighs, muscle cramps, stiffness and spasms, fatigue with exertion and lack of energy. Our patients all walk on tiptoe, so they show similar symptoms. When we genetically test them with our toe walking panel, we find that around 90 per cent of them have a genetic variant that explains their toe walking. These can be assigned, for example, to the area of myopathies (such as variants of the COL6A3 gene), the area of hereditary neuropathies (such as variants of the KMT2C gene) or the area of metabolic diseases (such as variants of the PYGM gene). In a smaller group of patients with almost identical symptoms, no abnormality is found in the genes of our panel, but spastic paraplegia can be detected. In another small group of our toe walkers, no abnormalities can be detected in the genes analysed in our toe walking panel, nor do they suffer from spastic paraplegia, as is also the case with healthy children. In contrast to these, however, they show a tiptoe gait. These patients suffer from infantile cerebral palsy, in which toe walking can also be observed. -
Autosomal recessive limb-girdle muscular dystrophy type 2J Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
Dilated cardiomyopathy 1G Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
Cardiomyopathy Uncertain:1
- -
Early-onset myopathy with fatal cardiomyopathy Uncertain:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. -
not specified Benign:1
Variant summary: TTN c.64442T>C (p.Leu21481Pro) results in a non-conservative amino acid change located in the A-band region (cardiodb.org) of the encoded protein sequence. Five of five in-silico tools predict a damaging effect of the variant on protein function. The variant allele was found at a frequency of 0.00056 in 248224 control chromosomes, predominantly at a frequency of 0.0011 within the Non-Finnish European subpopulation in the gnomAD database. The observed variant frequency within Non-Finnish European control individuals in the gnomAD database is approximately 2.8- fold the estimated maximal expected allele frequency for a pathogenic variant in TTN causing Dilated Cardiomyopathy phenotype (0.00039), suggesting that the variant is a benign polymorphism found primarily in populations of Non-Finnish European origin. c.64442T>C has been reported in the literature in individuals affected with cardiomyopathies (e.g. Lopes_2013, Campuzano_2015). These reports do not provide unequivocal conclusions about association of the variant with Dilated Cardiomyopathy. To our knowledge, no experimental evidence demonstrating an impact on protein function has been reported. 11 other clinical diagnostic laboratories have submitted clinical-significance assessments for this variant to ClinVar after 2014 without evidence for independent evaluation. Multiple laboratories reported the variant with conflicting assessments (benign/likely benign, n=5; uncertain significance, n=6). Based on the evidence outlined above, the variant was classified as likely benign. -
Autosomal recessive limb-girdle muscular dystrophy type 2J;C1858763:Dilated cardiomyopathy 1G Benign:1
- -
Tibial muscular dystrophy Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Myopathy, myofibrillar, 9, with early respiratory failure Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Cardiovascular phenotype Benign:1
Subpopulation frequency in support of benign classification -
Ventricular tachycardia Benign:1
- -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at