rs746206527
Variant summary
Our verdict is Likely pathogenic. The variant received 6 ACMG points: 6P and 0B. PM1PM2PP3_Moderate
The NM_000249.4(MLH1):c.929C>A(p.Thr310Lys) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. 13/22 in silico tools predict a damaging outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★★). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. T310A) has been classified as Uncertain significance.
Frequency
Consequence
NM_000249.4 missense
Scores
Clinical Significance
Conservation
Publications
- Lynch syndromeInheritance: AD Classification: DEFINITIVE, SUPPORTIVE Submitted by: G2P, ClinGen, Orphanet
- Lynch syndrome 2Inheritance: AD Classification: DEFINITIVE, STRONG Submitted by: Ambry Genetics, Genomics England PanelApp
- Muir-Torre syndromeInheritance: AD Classification: DEFINITIVE, STRONG, MODERATE, SUPPORTIVE Submitted by: Genomics England PanelApp, Ambry Genetics, G2P, Orphanet
- mismatch repair cancer syndrome 1Inheritance: AR Classification: DEFINITIVE, STRONG, SUPPORTIVE Submitted by: Ambry Genetics, G2P, Labcorp Genetics (formerly Invitae), Orphanet, ClinGen
- Lynch syndrome 1Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
- ovarian cancerInheritance: AD Classification: STRONG Submitted by: Genomics England PanelApp
- malignant pancreatic neoplasmInheritance: AD Classification: MODERATE Submitted by: Genomics England PanelApp
- rhabdomyosarcomaInheritance: AR Classification: MODERATE Submitted by: Genomics England PanelApp
- prostate cancerInheritance: AD Classification: LIMITED Submitted by: Ambry Genetics
- breast cancerInheritance: AD Classification: NO_KNOWN Submitted by: Ambry Genetics
- hereditary breast carcinomaInheritance: AD Classification: NO_KNOWN Submitted by: ClinGen
Genome browser will be placed here
ACMG classification
Our verdict: Likely_pathogenic. The variant received 6 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD2 exomes AF: 0.00000398 AC: 1AN: 251422 AF XY: 0.00000736 show subpopulations
GnomAD4 exome Cov.: 31
GnomAD4 genome Cov.: 32
ClinVar
Submissions by phenotype
Hereditary nonpolyposis colorectal neoplasms Uncertain:1
This variant is present in population databases (rs746206527, gnomAD 0.0009%). In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt MLH1 protein function. ClinVar contains an entry for this variant (Variation ID: 1035503). This variant has not been reported in the literature in individuals affected with MLH1-related conditions. This sequence change replaces threonine, which is neutral and polar, with lysine, which is basic and polar, at codon 310 of the MLH1 protein (p.Thr310Lys). -
Hereditary cancer-predisposing syndrome Uncertain:1
The p.T310K variant (also known as c.929C>A), located in coding exon 11 of the MLH1 gene, results from a C to A substitution at nucleotide position 929. The threonine at codon 310 is replaced by lysine, an amino acid with similar properties. This variant was not reported in population based cohorts in the following databases: Database of Single Nucleotide Polymorphisms (dbSNP), NHLBI Exome Sequencing Project (ESP), and 1000 Genomes Project. In the ESP, this variant was not observed in 6503 samples (13006 alleles) with coverage at this position. To date, this alteration has been detected with an allele frequency of approximately 0.002% (greater than 65000 alleles tested) in our clinical cohort. This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. In addition, this alteration is predicted to be deleterious by MAPP-MMR in silico analyses (Chao E et al. Hum Mutat. 2008 Jun;29(6):852-60). Since supporting evidence is limited at this time, the clinical significance of p.T310K remains unclear. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at