rs762846821
Variant summary
Our verdict is Pathogenic. Variant got 11 ACMG points: 11P and 0B. PM1PM2PM5PP3_StrongPP5
The NM_000546.6(TP53):c.461G>T(p.Gly154Val) variant causes a missense change. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. G154S) has been classified as Pathogenic.
Frequency
Consequence
NM_000546.6 missense
Scores
Clinical Significance
Conservation
Genome browser will be placed here
ACMG classification
Verdict is Pathogenic. Variant got 11 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 33
GnomAD4 exome Cov.: 35
GnomAD4 genome Cov.: 33
ClinVar
Submissions by phenotype
Hereditary cancer-predisposing syndrome Pathogenic:1
The p.G154V pathogenic mutation (also known as c.461G>T), located in coding exon 4 of the TP53 gene, results from a G to T substitution at nucleotide position 461. The glycine at codon 154 is replaced by valine, an amino acid with dissimilar properties. This alteration was identified in an individual diagnosed with a glioblastoma (Chen P et al. Cancer Genet Cytogenet, 1995 Jul;82:106-15). Studies conducted in human cell lines indicate this alteration is deficient at growth suppression and has a dominant negative effect (Kotler E et al. Mol.Cell. 2018 Jul;71:178-190.e8; Giacomelli AO et al. Nat. Genet. 2018 Oct;50:1381-1387). This variant is in the DNA binding domain of the TP53 protein and is reported to have non-functional transactivation in yeast based assays (Kato S et al. Proc. Natl. Acad. Sci. USA. 2003 Jul;100:8424-9). This variant has been detected in at least one individual at an allele fraction that is suggestive of clonal hematopoiesis, a predictor of TP53 pathogenicity (Ambry internal data; Fortuno C et al. Genet Med. 2022 03;24:673-680). This alteration has been observed numerous times as a somatic mutation in the cancerhotspots.org database (Chang MT et al. Cancer Discov. 2018 02;8:174-183). This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. This variant is considered to be rare based on population cohorts in the Genome Aggregation Database (gnomAD). Based on the supporting evidence, this alteration is interpreted as a disease-causing mutation. -
Li-Fraumeni syndrome Uncertain:1
This variant is not present in population databases (gnomAD no frequency). In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. Experimental studies have shown that this missense change affects TP53 function (PMID: 8336941, 9407971, 12826609, 20128691, 21343334). Advanced modeling performed at Invitae incorporating data from internal and/or published experimental studies (PMID: 12826609, 29979965, 30224644) indicates that this missense variant is expected to disrupt TP53 function. ClinVar contains an entry for this variant (Variation ID: 651769). This missense change has been observed in individual(s) with astrocytoma and glioblastoma (PMID: 7664239). This sequence change replaces glycine, which is neutral and non-polar, with valine, which is neutral and non-polar, at codon 154 of the TP53 protein (p.Gly154Val). -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at