rs864622173

Variant summary

Our verdict is Likely pathogenic. Variant got 6 ACMG points: 6P and 0B. PM2PP3_Strong

The NM_000051.4(ATM):​c.8660A>C​(p.His2887Pro) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. 12/21 in silico tools predict a damaging outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★★).

Frequency

Genomes: not found (cov: 32)

Consequence

ATM
NM_000051.4 missense

Scores

15
2
2

Clinical Significance

Uncertain significance criteria provided, multiple submitters, no conflicts U:4

Conservation

PhyloP100: 8.67
Variant links:
Genes affected
ATM (HGNC:795): (ATM serine/threonine kinase) The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. [provided by RefSeq, Aug 2010]
C11orf65 (HGNC:28519): (chromosome 11 open reading frame 65) Predicted to be involved in negative regulation of mitochondrial fission and negative regulation of protein targeting to mitochondrion. Predicted to be located in cytosol and mitochondrial outer membrane. [provided by Alliance of Genome Resources, Apr 2022]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Likely_pathogenic. Variant got 6 ACMG points.

PM2
Very rare variant in population databases, with high coverage;
PP3
MetaRNN computational evidence supports a deleterious effect, 0.973

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect #exon/exons MANE Protein UniProt
ATMNM_000051.4 linkuse as main transcriptc.8660A>C p.His2887Pro missense_variant 59/63 ENST00000675843.1 NP_000042.3

Ensembl

Gene Transcript HGVSc HGVSp Effect #exon/exons TSL MANE Protein Appris UniProt
ATMENST00000675843.1 linkuse as main transcriptc.8660A>C p.His2887Pro missense_variant 59/63 NM_000051.4 ENSP00000501606 P1

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
Cov.:
29
GnomAD4 genome
Cov.:
32

ClinVar

Significance: Uncertain significance
Submissions summary: Uncertain:4
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

not specified Uncertain:1
Uncertain significance, criteria provided, single submitterclinical testingWomen's Health and Genetics/Laboratory Corporation of America, LabCorpOct 19, 2018Variant summary: ATM c.8660A>C (p.His2887Pro) results in a non-conservative amino acid change located in the Phosphatidylinositol 3-/4-kinase, catalytic domain (IPR000403) of the encoded protein sequence. Five of five in-silico tools predict a damaging effect of the variant on protein function. The variant was absent in 245006 control chromosomes (gnomAD). The available data on variant occurrences in the general population are insufficient to allow any conclusion about variant significance. To our knowledge, no occurrence of c.8660A>C in individuals affected with Ataxia-Telangiectasia and no experimental evidence demonstrating its impact on protein function have been reported. One clinical diagnostic laboratory has submitted clinical-significance assessments for this variant to ClinVar after 2014 without evidence for independent evaluation, and classified the variant as uncertain significance. Based on the evidence outlined above, the variant was classified as uncertain significance. -
Ataxia-telangiectasia syndrome Uncertain:1
Uncertain significance, criteria provided, single submitterclinical testingLabcorp Genetics (formerly Invitae), LabcorpJun 13, 2022This sequence change replaces histidine, which is basic and polar, with proline, which is neutral and non-polar, at codon 2887 of the ATM protein (p.His2887Pro). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with ATM-related conditions. ClinVar contains an entry for this variant (Variation ID: 219596). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt ATM protein function. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. -
not provided Uncertain:1
Uncertain significance, criteria provided, single submitterclinical testingGeneDxAug 30, 2023Not observed at significant frequency in large population cohorts (gnomAD); In silico analysis supports that this missense variant has a deleterious effect on protein structure/function; Has not been previously published as pathogenic or benign to our knowledge; This variant is associated with the following publications: (PMID: 23532176) -
Hereditary cancer-predisposing syndrome Uncertain:1
Uncertain significance, criteria provided, single submitterclinical testingAmbry GeneticsJun 17, 2020The p.H2887P variant (also known as c.8660A>C), located in coding exon 58 of the ATM gene, results from an A to C substitution at nucleotide position 8660. The histidine at codon 2887 is replaced by proline, an amino acid with similar properties. This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Since supporting evidence is limited at this time, the clinical significance of this alteration remains unclear. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
0.95
BayesDel_addAF
Pathogenic
0.48
D
BayesDel_noAF
Pathogenic
0.45
CADD
Pathogenic
28
DANN
Benign
0.97
DEOGEN2
Uncertain
0.63
D;D
Eigen
Pathogenic
0.98
Eigen_PC
Pathogenic
0.89
FATHMM_MKL
Pathogenic
0.99
D
LIST_S2
Uncertain
0.96
D;.
M_CAP
Pathogenic
0.43
D
MetaRNN
Pathogenic
0.97
D;D
MetaSVM
Pathogenic
0.95
D
MutationAssessor
Pathogenic
4.1
H;H
MutationTaster
Benign
1.0
D;D;D
PrimateAI
Pathogenic
0.89
D
PROVEAN
Pathogenic
-8.6
D;D
REVEL
Pathogenic
0.97
Sift
Pathogenic
0.0
D;D
Sift4G
Pathogenic
0.0010
D;D
Polyphen
1.0
D;D
Vest4
0.99
MutPred
0.85
Gain of catalytic residue at H2887 (P = 0.1251);Gain of catalytic residue at H2887 (P = 0.1251);
MVP
0.99
MPC
0.73
ClinPred
1.0
D
GERP RS
5.5
RBP_binding_hub_radar
0.0
RBP_regulation_power_radar
2.1
Varity_R
0.91
gMVP
0.98

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs864622173; hg19: chr11-108218081; API