rs876658023

Variant summary

Our verdict is Pathogenic. The variant received 10 ACMG points: 10P and 0B. PVS1PM2

The NM_000363.5(TNNI3):​c.538delG​(p.Asp180ThrfsTer19) variant causes a frameshift change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.00000137 in 1,459,900 control chromosomes in the GnomAD database, with no homozygous occurrence. Variant has been reported in ClinVar as Uncertain significance (★★).

Frequency

Genomes: not found (cov: 30)
Exomes 𝑓: 0.0000014 ( 0 hom. )

Consequence

TNNI3
NM_000363.5 frameshift

Scores

Not classified

Clinical Significance

Uncertain significance criteria provided, multiple submitters, no conflicts U:2

Conservation

PhyloP100: 7.82

Publications

0 publications found
Variant links:
Genes affected
TNNI3 (HGNC:11947): (troponin I3, cardiac type) Troponin I (TnI), along with troponin T (TnT) and troponin C (TnC), is one of 3 subunits that form the troponin complex of the thin filaments of striated muscle. TnI is the inhibitory subunit; blocking actin-myosin interactions and thereby mediating striated muscle relaxation. The TnI subfamily contains three genes: TnI-skeletal-fast-twitch, TnI-skeletal-slow-twitch, and TnI-cardiac. This gene encodes the TnI-cardiac protein and is exclusively expressed in cardiac muscle tissues. Mutations in this gene cause familial hypertrophic cardiomyopathy type 7 (CMH7) and familial restrictive cardiomyopathy (RCM). Troponin I is useful in making a diagnosis of heart failure, and of ischemic heart disease. An elevated level of troponin is also now used as indicator of acute myocardial injury in patients hospitalized with moderate/severe Coronavirus Disease 2019 (COVID-19). Such elevation has also been associated with higher risk of mortality in cardiovascular disease patients hospitalized due to COVID-19. [provided by RefSeq, Aug 2020]
TNNI3 Gene-Disease associations (from GenCC):
  • hypertrophic cardiomyopathy
    Inheritance: AD Classification: DEFINITIVE Submitted by: ClinGen
  • dilated cardiomyopathy 2A
    Inheritance: AR Classification: DEFINITIVE, STRONG Submitted by: Labcorp Genetics (formerly Invitae), Ambry Genetics
  • hypertrophic cardiomyopathy 7
    Inheritance: AR, AD Classification: DEFINITIVE, STRONG Submitted by: PanelApp Australia, Labcorp Genetics (formerly Invitae), G2P
  • cardiomyopathy, familial restrictive, 1
    Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
  • dilated cardiomyopathy 1FF
    Inheritance: AD Classification: STRONG Submitted by: Labcorp Genetics (formerly Invitae)
  • dilated cardiomyopathy
    Inheritance: AD Classification: MODERATE Submitted by: ClinGen
  • familial isolated dilated cardiomyopathy
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • familial isolated restrictive cardiomyopathy
    Inheritance: AD Classification: SUPPORTIVE Submitted by: Orphanet
  • arrhythmogenic right ventricular cardiomyopathy
    Inheritance: AD Classification: NO_KNOWN Submitted by: ClinGen

Genome browser will be placed here

ACMG classification

Classification was made for transcript

Our verdict: Pathogenic. The variant received 10 ACMG points.

PVS1
Loss of function variant, product does not undergo nonsense mediated mRNA decay. Variant is located in the 3'-most 50 bp of the penultimate exon, not predicted to undergo nonsense mediated mRNA decay. There are 32 pathogenic variants in the truncated region.
PM2
Very rare variant in population databases, with high coverage;

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
TNNI3NM_000363.5 linkc.538delG p.Asp180ThrfsTer19 frameshift_variant Exon 7 of 8 ENST00000344887.10 NP_000354.4 P19429Q6FGX2

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
TNNI3ENST00000344887.10 linkc.538delG p.Asp180ThrfsTer19 frameshift_variant Exon 7 of 8 1 NM_000363.5 ENSP00000341838.5 P19429

Frequencies

GnomAD3 genomes
Cov.:
30
GnomAD4 exome
AF:
0.00000137
AC:
2
AN:
1459900
Hom.:
0
Cov.:
31
AF XY:
0.00000138
AC XY:
1
AN XY:
726272
show subpopulations
⚠️ The allele balance in gnomAD version 4 Exomes is significantly skewed from the expected value of 0.5.
African (AFR)
AF:
0.00
AC:
0
AN:
33438
American (AMR)
AF:
0.00
AC:
0
AN:
44722
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
26136
East Asian (EAS)
AF:
0.00
AC:
0
AN:
39698
South Asian (SAS)
AF:
0.00
AC:
0
AN:
86202
European-Finnish (FIN)
AF:
0.00
AC:
0
AN:
52590
Middle Eastern (MID)
AF:
0.00
AC:
0
AN:
4840
European-Non Finnish (NFE)
AF:
0.00000180
AC:
2
AN:
1112000
Other (OTH)
AF:
0.00
AC:
0
AN:
60274
⚠️ The allele balance in gnomAD4 Exomes is highly skewed from 0.5 (p-value = 0), which strongly suggests a high chance of mosaicism in these individuals.
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.375
Heterozygous variant carriers
0
1
1
2
2
3
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Exome Het
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
GnomAD4 genome
Cov.:
30

ClinVar

Significance: Uncertain significance
Submissions summary: Uncertain:2
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

not specified Uncertain:1
Jun 03, 2015
Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Variant classified as Uncertain Significance - Favor Pathogenic. The p.Asp180fs variant in TNNI3 has not been previously reported in individuals with cardiomyop athy or in large population studies. This frameshift variant is predicted to alt er the protein?s amino acid sequence beginning at position 180 and lead to a pre mature termination codon 19 amino acids downstream. This termination codon occur s within the terminal 50 bases of the second to last exon and is more likely to escape nonsense mediated decay (NMD) and result in a truncated protein. While he terozygous frameshift variants in TNNI3 are uncommon, they have been reported in cases of HCM (Olivotto 2008, Olivotto 2011) and RCM with functional evidence of calcium sensitization (Kaski 2008, Kostareva 2009). However, it remains unclear if the p.Asp180fs variant would impact protein function. In summary, while ther e is some suspicion for a pathogenic role, the clinical significance of the p.As p180fs variant is uncertain. -

Hypertrophic cardiomyopathy Uncertain:1
Aug 31, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This sequence change creates a premature translational stop signal (p.Asp180Thrfs*19) in the TNNI3 gene. While this is not anticipated to result in nonsense mediated decay, it is expected to disrupt the last 31 amino acid(s) of the TNNI3 protein. This variant is not present in population databases (gnomAD no frequency). This premature translational stop signal has been observed in individual(s) with clinical features of hypertrophic cardiomyopathy (PMID: 27532257, 37652022; internal data). ClinVar contains an entry for this variant (Variation ID: 229332). Experimental studies and prediction algorithms are not available or were not evaluated, and the functional significance of this variant is currently unknown. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
PhyloP100
7.8
Mutation Taster
=6/194
disease causing

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.040
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

Other links and lift over

dbSNP: rs876658023; hg19: chr19-55665408; API