rs878854153
Positions:
Variant summary
Our verdict is Likely pathogenic. Variant got 7 ACMG points: 7P and 0B. PM2PP2PP3_Strong
The NM_001035.3(RYR2):c.1871C>T(p.Ala624Val) variant causes a missense change involving the alteration of a conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★).
Frequency
Genomes: not found (cov: 32)
Consequence
RYR2
NM_001035.3 missense
NM_001035.3 missense
Scores
12
5
1
Clinical Significance
Conservation
PhyloP100: 7.89
Genes affected
RYR2 (HGNC:10484): (ryanodine receptor 2) This gene encodes a ryanodine receptor found in cardiac muscle sarcoplasmic reticulum. The encoded protein is one of the components of a calcium channel, composed of a tetramer of the ryanodine receptor proteins and a tetramer of FK506 binding protein 1B proteins, that supplies calcium to cardiac muscle. Mutations in this gene are associated with stress-induced polymorphic ventricular tachycardia and arrhythmogenic right ventricular dysplasia. [provided by RefSeq, Jul 2008]
Genome browser will be placed here
ACMG classification
Classification made for transcript
Verdict is Likely_pathogenic. Variant got 7 ACMG points.
PM2
Very rare variant in population databases, with high coverage;
PP2
Missense variant in gene, where missense usually causes diseases (based on misZ statistic), RYR2. . Gene score misZ 5.7809 (greater than the threshold 3.09). Trascript score misZ 6.4158 (greater than threshold 3.09). GenCC has associacion of gene with hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, catecholaminergic polymorphic ventricular tachycardia 1, arrhythmogenic right ventricular dysplasia 2, catecholaminergic polymorphic ventricular tachycardia.
PP3
MetaRNN computational evidence supports a deleterious effect, 0.961
Transcripts
RefSeq
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | MANE | Protein | UniProt |
---|---|---|---|---|---|---|---|---|
RYR2 | NM_001035.3 | c.1871C>T | p.Ala624Val | missense_variant | 19/105 | ENST00000366574.7 | NP_001026.2 |
Ensembl
Gene | Transcript | HGVSc | HGVSp | Effect | #exon/exons | TSL | MANE | Protein | Appris | UniProt |
---|---|---|---|---|---|---|---|---|---|---|
RYR2 | ENST00000366574.7 | c.1871C>T | p.Ala624Val | missense_variant | 19/105 | 1 | NM_001035.3 | ENSP00000355533 | P1 | |
RYR2 | ENST00000660292.2 | c.1871C>T | p.Ala624Val | missense_variant | 19/106 | ENSP00000499787 | ||||
RYR2 | ENST00000659194.3 | c.1871C>T | p.Ala624Val | missense_variant | 19/105 | ENSP00000499653 | ||||
RYR2 | ENST00000609119.2 | c.1871C>T | p.Ala624Val | missense_variant, NMD_transcript_variant | 19/104 | 5 | ENSP00000499659 |
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD3 genomes
Cov.:
32
GnomAD4 exome Cov.: 33
GnomAD4 exome
Cov.:
33
GnomAD4 genome Cov.: 32
GnomAD4 genome
Cov.:
32
ClinVar
Significance: Uncertain significance
Submissions summary: Uncertain:1
Revision: criteria provided, single submitter
LINK: link
Submissions by phenotype
Catecholaminergic polymorphic ventricular tachycardia 1 Uncertain:1
Uncertain significance, criteria provided, single submitter | clinical testing | Labcorp Genetics (formerly Invitae), Labcorp | Sep 26, 2021 | This missense change has been observed in individual(s) with clinical suspicion of catecholaminergic polymorphic ventricular tachycardia (PMID: 31737537). This variant is not present in population databases (ExAC no frequency). This sequence change replaces alanine with valine at codon 624 of the RYR2 protein (p.Ala624Val). The alanine residue is highly conserved and there is a small physicochemical difference between alanine and valine. ClinVar contains an entry for this variant (Variation ID: 238226). In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt RYR2 protein function. - |
Computational scores
Source:
Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
BayesDel_addAF
Pathogenic
D
BayesDel_noAF
Pathogenic
CADD
Benign
DANN
Pathogenic
DEOGEN2
Pathogenic
D;D
Eigen
Uncertain
Eigen_PC
Uncertain
FATHMM_MKL
Pathogenic
D
LIST_S2
Pathogenic
D;D
M_CAP
Pathogenic
D
MetaRNN
Pathogenic
D;D
MetaSVM
Uncertain
D
MutationAssessor
Pathogenic
M;.
MutationTaster
Benign
D
PrimateAI
Pathogenic
D
PROVEAN
Uncertain
D;.
REVEL
Uncertain
Sift
Pathogenic
D;.
Polyphen
B;.
Vest4
MutPred
Gain of sheet (P = 0.1451);.;
MVP
MPC
ClinPred
D
GERP RS
Varity_R
gMVP
Splicing
Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
Details are displayed if max score is > 0.2
Find out detailed SpliceAI scores and Pangolin per-transcript scores at