NM_000138.5:c.5372G>A

Variant summary

Our verdict is Pathogenic. Variant got 17 ACMG points: 17P and 0B. PM1PM2PP2PP3_StrongPP5_Very_Strong

The NM_000138.5(FBN1):​c.5372G>A​(p.Cys1791Tyr) variant causes a missense change involving the alteration of a conserved nucleotide. The variant allele was found at a frequency of 0.000000684 in 1,461,708 control chromosomes in the GnomAD database, with no homozygous occurrence. In-silico tool predicts a pathogenic outcome for this variant. 11/18 in silico tools predict a damaging outcome for this variant. Variant has been reported in ClinVar as Likely pathogenic (★★).

Frequency

Genomes: not found (cov: 32)
Exomes 𝑓: 6.8e-7 ( 0 hom. )

Consequence

FBN1
NM_000138.5 missense

Scores

14
2
1

Clinical Significance

Pathogenic/Likely pathogenic criteria provided, multiple submitters, no conflicts P:5

Conservation

PhyloP100: 7.91
Variant links:
Genes affected
FBN1 (HGNC:3603): (fibrillin 1) This gene encodes a member of the fibrillin family of proteins. The encoded preproprotein is proteolytically processed to generate two proteins including the extracellular matrix component fibrillin-1 and the protein hormone asprosin. Fibrillin-1 is an extracellular matrix glycoprotein that serves as a structural component of calcium-binding microfibrils. These microfibrils provide force-bearing structural support in elastic and nonelastic connective tissue throughout the body. Asprosin, secreted by white adipose tissue, has been shown to regulate glucose homeostasis. Mutations in this gene are associated with Marfan syndrome and the related MASS phenotype, as well as ectopia lentis syndrome, Weill-Marchesani syndrome, Shprintzen-Goldberg syndrome and neonatal progeroid syndrome. [provided by RefSeq, Apr 2016]

Genome browser will be placed here

ACMG classification

Classification made for transcript

Verdict is Pathogenic. Variant got 17 ACMG points.

PM1
In a domain EGF-like 29; calcium-binding (size 41) in uniprot entity FBN1_HUMAN there are 11 pathogenic changes around while only 1 benign (92%) in NM_000138.5
PM2
Very rare variant in population databases, with high coverage;
PP2
Missense variant in the FBN1 gene, where missense mutations are typically associated with disease (based on misZ statistic). The gene has 1311 curated pathogenic missense variants (we use a threshold of 10). The gene has 112 curated benign missense variants. Gene score misZ: 5.0644 (above the threshold of 3.09). Trascript score misZ: 8.1787 (above the threshold of 3.09). GenCC associations: The gene is linked to MASS syndrome, Weill-Marchesani syndrome, geleophysic dysplasia, Shprintzen-Goldberg syndrome, Acromicric dysplasia, familial thoracic aortic aneurysm and aortic dissection, progeroid and marfanoid aspect-lipodystrophy syndrome, ectopia lentis 1, isolated, autosomal dominant, Marfan syndrome, Weill-Marchesani syndrome 2, dominant, isolated ectopia lentis, neonatal Marfan syndrome, stiff skin syndrome.
PP3
MetaRNN computational evidence supports a deleterious effect, 0.996
PP5
Variant 15-48456687-C-T is Pathogenic according to our data. Variant chr15-48456687-C-T is described in ClinVar as [Likely_pathogenic]. Clinvar id is 263568.Status of the report is criteria_provided_multiple_submitters_no_conflicts, 2 stars. Variant chr15-48456687-C-T is described in Lovd as [Likely_pathogenic].

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
FBN1NM_000138.5 linkc.5372G>A p.Cys1791Tyr missense_variant Exon 44 of 66 ENST00000316623.10 NP_000129.3 P35555
FBN1NM_001406716.1 linkc.5372G>A p.Cys1791Tyr missense_variant Exon 43 of 65 NP_001393645.1

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
FBN1ENST00000316623.10 linkc.5372G>A p.Cys1791Tyr missense_variant Exon 44 of 66 1 NM_000138.5 ENSP00000325527.5 P35555

Frequencies

GnomAD3 genomes
Cov.:
32
GnomAD4 exome
AF:
6.84e-7
AC:
1
AN:
1461708
Hom.:
0
Cov.:
32
AF XY:
0.00000138
AC XY:
1
AN XY:
727184
show subpopulations
Gnomad4 AFR exome
AF:
0.00
Gnomad4 AMR exome
AF:
0.00
Gnomad4 ASJ exome
AF:
0.00
Gnomad4 EAS exome
AF:
0.00
Gnomad4 SAS exome
AF:
0.00
Gnomad4 FIN exome
AF:
0.00
Gnomad4 NFE exome
AF:
8.99e-7
Gnomad4 OTH exome
AF:
0.00
GnomAD4 genome
Cov.:
32

ClinVar

Significance: Pathogenic/Likely pathogenic
Submissions summary: Pathogenic:5
Revision: criteria provided, multiple submitters, no conflicts
LINK: link

Submissions by phenotype

Marfan syndrome Pathogenic:2
Mar 01, 2021
Centre of Medical Genetics, University of Antwerp
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: research

PM2, PVS2, PP4 -

Nov 07, 2017
Center for Medical Genetics Ghent, University of Ghent
Significance: Likely pathogenic
Review Status: no assertion criteria provided
Collection Method: clinical testing

- -

Marfan Syndrome/Loeys-Dietz Syndrome/Familial Thoracic Aortic Aneurysms and Dissections Pathogenic:1
Dec 17, 2018
Women's Health and Genetics/Laboratory Corporation of America, LabCorp
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

Variant summary: FBN1 c.5372G>A (p.Cys1791Tyr) results in a non-conservative amino acid change located in the EGF-like calcium-binding domain (IPR001881) of the encoded protein sequence. Five of five in-silico tools predict a damaging effect of the variant on protein function. The variant was absent in 246008 control chromosomes. c.5372G>A has been reported in the literature in individuals affected with Marfan Syndrome. These data indicate that the variant is likely to be associated with disease. To our knowledge, no experimental evidence demonstrating an impact on protein function has been reported. Two clinical diagnostic laboratories have submitted clinical-significance assessments for this variant to ClinVar after 2014 without evidence for independent evaluation. All laboratories classified the variant as pathogenic/likely pathogenic. Based on the evidence outlined above, the variant was classified as pathogenic. -

Cardiovascular phenotype Pathogenic:1
Jun 07, 2017
Ambry Genetics
Significance: Likely pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

The p.C1791Y variant (also known as c.5372G>A), located in coding exon 43 of the FBN1 gene, results from a G to A substitution at nucleotide position 5372. The cysteine at codon 1791 is replaced by tyrosine, an amino acid with highly dissimilar properties, and is located in the cbEGF-like #25 domain. The majority of FBN1 mutations identified to date have involved the substitution or generation of cysteine residues within cbEGF domains (Vollbrandt T et al. J Biol Chem. 2004;279(31):32924-32931). This variant was described in an 38-year-old individual with classic Marfan syndrome (MFS) (Loeys B et al. Arch. Intern. Med. 2001;161(20):2447-54). It was also reported in a study that screened samples with known FBN1 genotypes (Mátyás G et al. Hum. Mutat. 2002;19(4):443-56). Two other alterations in the same codon (p.C1791F and p.C1791R) have been associated with MFS (Howarth R et al. Genet. Test. 2007;11(2):146-52; Rommel K et al. Hum. Mutat. 2005;26(6):529-39). Furthermore, internal structural analysis indicates that this alteration disrupts a disulfide bond and is structurally destabilizing (Lee SS et al. Structure. 2004;12(4):717-29). This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Based on the majority of available evidence to date, this variant is likely to be pathogenic. -

Marfan syndrome;C4707243:Familial thoracic aortic aneurysm and aortic dissection Pathogenic:1
Oct 24, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance: Pathogenic
Review Status: criteria provided, single submitter
Collection Method: clinical testing

This sequence change replaces cysteine, which is neutral and slightly polar, with tyrosine, which is neutral and polar, at codon 1791 of the FBN1 protein (p.Cys1791Tyr). This variant is not present in population databases (gnomAD no frequency). This missense change has been observed in individuals with Marfan syndrome (PMID: 11700157; internal data). ClinVar contains an entry for this variant (Variation ID: 263568). Invitae Evidence Modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) indicates that this missense variant is expected to disrupt FBN1 protein function with a positive predictive value of 95%. This variant affects a cysteine residue in the EGF-like, TGFBP or hybrid motif domains of FBN1. Cysteine residues are believed to be involved in intramolecular disulfide bridges and have been shown to be important for FBN1 protein structure (PMID: 16905551, 19349279). In addition, missense substitutions affecting cysteine residues within these domains are significantly overrepresented among patients with Marfan syndrome (PMID: 16571647, 17701892). For these reasons, this variant has been classified as Pathogenic. -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Pathogenic
1.0
BayesDel_addAF
Pathogenic
0.59
D
BayesDel_noAF
Pathogenic
0.60
CADD
Pathogenic
30
DANN
Uncertain
1.0
Eigen
Pathogenic
1.2
Eigen_PC
Pathogenic
1.1
FATHMM_MKL
Pathogenic
0.99
D
LIST_S2
Pathogenic
0.99
D
M_CAP
Pathogenic
0.97
D
MetaRNN
Pathogenic
1.0
D
MetaSVM
Pathogenic
0.98
D
PrimateAI
Pathogenic
0.89
D
PROVEAN
Pathogenic
-9.9
D
REVEL
Pathogenic
0.97
Sift
Uncertain
0.0010
D
Sift4G
Pathogenic
0.0010
D
Vest4
0.98
MutPred
0.99
Loss of catalytic residue at G1796 (P = 0.25);
MVP
0.99
MPC
1.9
ClinPred
1.0
D
GERP RS
5.8

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.0
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

LitVar

Below is the list of publications found by LitVar. It may be empty.

Other links and lift over

dbSNP: rs886038848; hg19: chr15-48748884; API