NM_021830.5:c.-605G>T
Variant summary
Our verdict is Benign. Variant got -20 ACMG points: 0P and 20B. BP4_StrongBP6_Very_StrongBA1
The NM_021830.5(TWNK):c.-605G>T variant causes a 5 prime UTR change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.336 in 1,081,648 control chromosomes in the GnomAD database, including 63,608 homozygotes. In-silico tool predicts a benign outcome for this variant. Variant has been reported in ClinVar as Benign (★★).
Frequency
Consequence
NM_021830.5 5_prime_UTR
Scores
Clinical Significance
Conservation
Genome browser will be placed here
ACMG classification
Verdict is Benign. Variant got -20 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes AF: 0.353 AC: 53597AN: 151796Hom.: 9814 Cov.: 32
GnomAD4 exome AF: 0.333 AC: 309944AN: 929734Hom.: 53769 Cov.: 12 AF XY: 0.333 AC XY: 153977AN XY: 462320
GnomAD4 genome AF: 0.353 AC: 53666AN: 151914Hom.: 9839 Cov.: 32 AF XY: 0.352 AC XY: 26104AN XY: 74254
ClinVar
Submissions by phenotype
not specified Benign:1
This variant is considered likely benign or benign based on one or more of the following criteria: it is a conservative change, it occurs at a poorly conserved position in the protein, it is predicted to be benign by multiple in silico algorithms, and/or has population frequency not consistent with disease. -
Autosomal recessive cerebellar ataxia Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 3 Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
not provided Benign:1
- -
Infantile onset spinocerebellar ataxia Benign:1
This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at