rs1060501437
Variant summary
Our verdict is Likely pathogenic. Variant got 6 ACMG points: 6P and 0B. PM1PM2PP2PP3
The NM_000257.4(MYH7):c.2748G>T(p.Glu916Asp) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant was absent in control chromosomes in GnomAD project. In-silico tool predicts a pathogenic outcome for this variant. Variant has been reported in ClinVar as Uncertain significance (★★).
Frequency
Consequence
NM_000257.4 missense
Scores
Clinical Significance
Conservation
Genome browser will be placed here
ACMG classification
Verdict is Likely_pathogenic. Variant got 6 ACMG points.
Transcripts
RefSeq
Ensembl
Frequencies
GnomAD3 genomes Cov.: 32
GnomAD4 exome Cov.: 34
GnomAD4 genome Cov.: 32
ClinVar
Submissions by phenotype
Cardiomyopathy Uncertain:1
This missense variant replaces glutamic acid with aspartic acid at codon 916 of the MYH7 protein. Computational prediction is inconclusive regarding the impact of this variant on protein structure and function (internally defined REVEL score threshold 0.5 < inconclusive < 0.7, PMID: 27666373). To our knowledge, functional studies have not been reported for this variant. This variant has not been reported in individuals affected with MYH7-related disorders in the literature. This variant has not been identified in the general population by the Genome Aggregation Database (gnomAD). The available evidence is insufficient to determine the role of this variant in disease conclusively. Therefore, this variant is classified as a Variant of Uncertain Significance. -
Hypertrophic cardiomyopathy Uncertain:1
This sequence change replaces glutamic acid, which is acidic and polar, with aspartic acid, which is acidic and polar, at codon 916 of the MYH7 protein (p.Glu916Asp). This variant is not present in population databases (gnomAD no frequency). This variant has not been reported in the literature in individuals affected with MYH7-related conditions. ClinVar contains an entry for this variant (Variation ID: 407174). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt MYH7 protein function with a positive predictive value of 95%. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. -
Computational scores
Source:
Splicing
Find out detailed SpliceAI scores and Pangolin per-transcript scores at