NM_000218.3:c.1861G>A

Variant summary

Our verdict is Likely benign. The variant received -1 ACMG points: 1P and 2B. PP2BP4_Moderate

The NM_000218.3(KCNQ1):​c.1861G>A​(p.Gly621Ser) variant causes a missense change involving the alteration of a non-conserved nucleotide. The variant allele was found at a frequency of 0.0000574 in 1,568,874 control chromosomes in the GnomAD database, including 1 homozygotes. In-silico tool predicts a benign outcome for this variant. 14/23 in silico tools predict a benign outcome for this variant. Variant has been reported in ClinVar as Conflicting classifications of pathogenicity (no stars). Another variant affecting the same amino acid position, but resulting in a different missense (i.e. G621D) has been classified as Uncertain significance.

Frequency

Genomes: 𝑓 0.00023 ( 1 hom., cov: 33)
Exomes 𝑓: 0.000039 ( 0 hom. )

Consequence

KCNQ1
NM_000218.3 missense

Scores

2
2
16

Clinical Significance

Conflicting classifications of pathogenicity criteria provided, conflicting classifications U:6B:1O:1

Conservation

PhyloP100: 0.0250

Publications

8 publications found
Variant links:
Genes affected
KCNQ1 (HGNC:6294): (potassium voltage-gated channel subfamily Q member 1) This gene encodes a voltage-gated potassium channel required for repolarization phase of the cardiac action potential. This protein can form heteromultimers with two other potassium channel proteins, KCNE1 and KCNE3. Mutations in this gene are associated with hereditary long QT syndrome 1 (also known as Romano-Ward syndrome), Jervell and Lange-Nielsen syndrome, and familial atrial fibrillation. This gene exhibits tissue-specific imprinting, with preferential expression from the maternal allele in some tissues, and biallelic expression in others. This gene is located in a region of chromosome 11 amongst other imprinted genes that are associated with Beckwith-Wiedemann syndrome (BWS), and itself has been shown to be disrupted by chromosomal rearrangements in patients with BWS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2011]
KCNQ1-AS1 (HGNC:42790): (KCNQ1 antisense RNA 1)

Genome browser will be placed here

ACMG classification

Classification was made for transcript

Our verdict: Likely_benign. The variant received -1 ACMG points.

PP2
Missense variant in the gene, where a lot of missense mutations are associated with disease in ClinVar. The gene has 212 curated pathogenic missense variants (we use a threshold of 10). The gene has 12 curated benign missense variants. Gene score misZ: 1.8321 (below the threshold of 3.09). Trascript score misZ: 0.90233 (below the threshold of 3.09). GenCC associations: The gene is linked to short QT syndrome type 2, long QT syndrome 1, Jervell and Lange-Nielsen syndrome 1, long QT syndrome, short QT syndrome, Jervell and Lange-Nielsen syndrome, hypertrophic cardiomyopathy, familial atrial fibrillation, atrial fibrillation, familial, 3.
BP4
Computational evidence support a benign effect (MetaRNN=0.17476952).

Transcripts

RefSeq

Gene Transcript HGVSc HGVSp Effect Exon rank MANE Protein UniProt
KCNQ1NM_000218.3 linkc.1861G>A p.Gly621Ser missense_variant Exon 16 of 16 ENST00000155840.12 NP_000209.2 P51787-1Q96AI9

Ensembl

Gene Transcript HGVSc HGVSp Effect Exon rank TSL MANE Protein Appris UniProt
KCNQ1ENST00000155840.12 linkc.1861G>A p.Gly621Ser missense_variant Exon 16 of 16 1 NM_000218.3 ENSP00000155840.2 P51787-1

Frequencies

GnomAD3 genomes
AF:
0.000230
AC:
35
AN:
152196
Hom.:
1
Cov.:
33
show subpopulations
Gnomad AFR
AF:
0.000459
Gnomad AMI
AF:
0.00
Gnomad AMR
AF:
0.000916
Gnomad ASJ
AF:
0.00
Gnomad EAS
AF:
0.00
Gnomad SAS
AF:
0.00
Gnomad FIN
AF:
0.00
Gnomad MID
AF:
0.00
Gnomad NFE
AF:
0.0000294
Gnomad OTH
AF:
0.00
GnomAD2 exomes
AF:
0.0000508
AC:
9
AN:
177000
AF XY:
0.0000421
show subpopulations
Gnomad AFR exome
AF:
0.000192
Gnomad AMR exome
AF:
0.000109
Gnomad ASJ exome
AF:
0.00
Gnomad EAS exome
AF:
0.000149
Gnomad FIN exome
AF:
0.00
Gnomad NFE exome
AF:
0.0000140
Gnomad OTH exome
AF:
0.000209
GnomAD4 exome
AF:
0.0000388
AC:
55
AN:
1416560
Hom.:
0
Cov.:
31
AF XY:
0.0000400
AC XY:
28
AN XY:
700550
show subpopulations
African (AFR)
AF:
0.000308
AC:
10
AN:
32484
American (AMR)
AF:
0.000129
AC:
5
AN:
38766
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
25340
East Asian (EAS)
AF:
0.0000538
AC:
2
AN:
37196
South Asian (SAS)
AF:
0.0000124
AC:
1
AN:
80622
European-Finnish (FIN)
AF:
0.00
AC:
0
AN:
49262
Middle Eastern (MID)
AF:
0.000175
AC:
1
AN:
5716
European-Non Finnish (NFE)
AF:
0.0000285
AC:
31
AN:
1088534
Other (OTH)
AF:
0.0000853
AC:
5
AN:
58640
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.488
Heterozygous variant carriers
0
4
8
11
15
19
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Exome Het
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
GnomAD4 genome
AF:
0.000230
AC:
35
AN:
152314
Hom.:
1
Cov.:
33
AF XY:
0.000188
AC XY:
14
AN XY:
74486
show subpopulations
African (AFR)
AF:
0.000457
AC:
19
AN:
41560
American (AMR)
AF:
0.000915
AC:
14
AN:
15306
Ashkenazi Jewish (ASJ)
AF:
0.00
AC:
0
AN:
3472
East Asian (EAS)
AF:
0.00
AC:
0
AN:
5186
South Asian (SAS)
AF:
0.00
AC:
0
AN:
4828
European-Finnish (FIN)
AF:
0.00
AC:
0
AN:
10624
Middle Eastern (MID)
AF:
0.00
AC:
0
AN:
294
European-Non Finnish (NFE)
AF:
0.0000294
AC:
2
AN:
68018
Other (OTH)
AF:
0.00
AC:
0
AN:
2114
Allele Balance Distribution
Red line indicates average allele balance
Average allele balance: 0.504
Heterozygous variant carriers
0
2
3
5
6
8
0.00
0.20
0.40
0.60
0.80
0.95
Allele balance

Age Distribution

Genome Het
Genome Hom
Variant carriers
0
2
4
6
8
10
<30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
>80
Age
Alfa
AF:
0.000158
Hom.:
0
Bravo
AF:
0.000302
TwinsUK
AF:
0.000270
AC:
1
ALSPAC
AF:
0.00
AC:
0
ExAC
AF:
0.0000420
AC:
5

ClinVar

Significance: Conflicting classifications of pathogenicity
Submissions summary: Uncertain:6Benign:1Other:1
Revision: criteria provided, conflicting classifications
LINK: link

Submissions by phenotype

not specified Uncertain:2
Dec 02, 2024
Women's Health and Genetics/Laboratory Corporation of America, LabCorp
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

Variant summary: KCNQ1 c.1861G>A (p.Gly621Ser) results in a non-conservative amino acid change in the encoded protein sequence. Three of five in-silico tools predict a benign effect of the variant on protein function. The variant allele was found at a frequency of 5.6e-05 in 177610 control chromosomes, including 1 homozygote. This frequency is not significantly higher than estimated for a pathogenic variant in KCNQ1 causing Jervell And Lange-Nielsen Syndrome (5.6e-05 vs 0.0024), allowing no conclusion about variant significance. c.1861G>A has been reported in the literature in the presumed heterozygous state in multiple individuals affected by sudden unexplained death and also in an individual affected with Long QT Syndrome (Campuzano_2014, Lin_2017, Campuzano_2020, Ripoll-Vera_2021, Martinez-Barrios_2023), but it was also reported in an apparently healthy control (Ackerman_2003) and no segregation with disease was observed in families. These reports do not provide unequivocal conclusions about association of the variant with KCNQ1-related conditions. To our knowledge, no experimental evidence demonstrating an impact on protein function has been reported. The following publications have been ascertained in the context of this evaluation (PMID: 14661677, 32268277, 25447171, 29247119, 32917565, 36693943). ClinVar contains an entry for this variant (Variation ID: 67061). Based on the evidence outlined above, the variant was classified as uncertain significance. -

Mar 22, 2017
GeneDx
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The G621S variant in the KCNQ1 gene has been published in an 11-month-old male with sudden cardiac death during sleeping. However, this individual harbored several cardiogenetic variants, including a TTN variant predicted to be disease-causing (Campuzano et al.,2014). The G621S variant is a non-conservative amino acid substitution, which is likely to impact secondary protein structure as these residues differ in polarity, charge, size and/or other properties. However, this substitution occurs at a position that is not conserved across species, and in silico analysis predicts this variant likely does not alter the protein structure/function. Finally, although G621S is not observed at a significant frequency in large population cohorts, it has been reported as a rare control variant in at least one ostensibly healthy Black individual (Lek et al., 2016; 1000 Genomes Consortium et al., 2015; Exome Variant Server; Ackerman et al., 2003; Kapa et al., 2009; Giudicessi et al., 2012). -

Long QT syndrome Uncertain:1Benign:1
Aug 06, 2024
All of Us Research Program, National Institutes of Health
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This missense variant replaces glycine with serine at codon 621 of the KCNQ1 protein. Computational prediction is inconclusive regarding the impact of this variant on protein structure and function (internally defined REVEL score threshold 0.5 < inconclusive < 0.7, PMID: 27666373). To our knowledge, functional studies have not been reported for this variant. This variant has been reported in two individuals affected with sudden cardiac death (PMID: 25447171, 32917565) and in an individual affected with long QT syndrome (PMID: 32268277). This variant has also been identified in 16/208352 chromosomes in the general population, including 1 homozygous individual in Latino, by the Genome Aggregation Database (gnomAD). The available evidence is insufficient to determine the role of this variant in disease conclusively. Therefore, this variant is classified as a Variant of Uncertain Significance. -

Dec 07, 2024
Labcorp Genetics (formerly Invitae), Labcorp
Significance:Likely benign
Review Status:criteria provided, single submitter
Collection Method:clinical testing

- -

Beckwith-Wiedemann syndrome;C1837014:Atrial fibrillation, familial, 3;C1865019:Short QT syndrome type 2;C4551509:Jervell and Lange-Nielsen syndrome 1;C4551647:Long QT syndrome 1 Uncertain:1
Sep 01, 2021
Fulgent Genetics, Fulgent Genetics
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

- -

Cardiovascular phenotype Uncertain:1
Jan 21, 2021
Ambry Genetics
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

The c.1861G>A (p.G621S) alteration is located in exon 16 (coding exon 16) of the KCNQ1 gene. This alteration results from a G to A substitution at nucleotide position 1861, causing the glycine (G) at amino acid position 621 to be replaced by a serine (S). Based on insufficient or conflicting evidence, the clinical significance of this alteration remains unclear. -

Cardiac arrhythmia Uncertain:1
Feb 15, 2024
Color Diagnostics, LLC DBA Color Health
Significance:Uncertain significance
Review Status:criteria provided, single submitter
Collection Method:clinical testing

This missense variant replaces glycine with serine at codon 621 of the KCNQ1 protein. Computational prediction is inconclusive regarding the impact of this variant on protein structure and function (internally defined REVEL score threshold 0.5 < inconclusive < 0.7, PMID: 27666373). To our knowledge, functional studies have not been reported for this variant. This variant has been reported in two individuals affected with sudden cardiac death (PMID: 25447171, 32917565) and in an individual affected with long QT syndrome (PMID: 32268277). This variant has also been identified in 16/208352 chromosomes in the general population, including 1 homozygous individual in Latino, by the Genome Aggregation Database (gnomAD). The available evidence is insufficient to determine the role of this variant in disease conclusively. Therefore, this variant is classified as a Variant of Uncertain Significance. -

not provided Other:1
-
Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust
Significance:not provided
Review Status:no classification provided
Collection Method:literature only

This variant has been reported in the following publications (PMID:14661677;PMID:19841300). -

Computational scores

Source: dbNSFP v4.3

Name
Calibrated prediction
Score
Prediction
AlphaMissense
Benign
0.076
CardioboostArm
Benign
0.00015
BayesDel_addAF
Benign
-0.13
T
BayesDel_noAF
Uncertain
-0.070
CADD
Benign
6.8
DANN
Benign
0.83
DEOGEN2
Benign
0.26
T;.;.
Eigen
Benign
-1.8
Eigen_PC
Benign
-1.8
FATHMM_MKL
Benign
0.029
N
LIST_S2
Benign
0.60
T;T;T
M_CAP
Pathogenic
0.76
D
MetaRNN
Benign
0.17
T;T;T
MetaSVM
Pathogenic
1.2
D
MutationAssessor
Benign
-0.34
N;.;.
PhyloP100
0.025
PrimateAI
Benign
0.38
T
PROVEAN
Benign
0.51
N;N;.
REVEL
Uncertain
0.57
Sift
Benign
0.46
T;T;.
Sift4G
Benign
0.74
T;T;.
Polyphen
0.0050
B;.;.
Vest4
0.073
MVP
0.68
MPC
0.37
ClinPred
0.0047
T
GERP RS
-3.4
Varity_R
0.10
gMVP
0.59
Mutation Taster
=41/59
disease causing

Splicing

Name
Calibrated prediction
Score
Prediction
SpliceAI score (max)
0.010
Details are displayed if max score is > 0.2

Find out detailed SpliceAI scores and Pangolin per-transcript scores at spliceailookup.broadinstitute.org

Publications

Other links and lift over

dbSNP: rs199472820; hg19: chr11-2869063; API